Working
This commit is contained in:
parent
8bc84748a3
commit
2b7ab1af9d
@ -63,6 +63,13 @@ theorem stronglyMeromorphicOn_ratlPolynomial₃
|
||||
apply analyticOnNhd_const
|
||||
|
||||
|
||||
theorem stronglyMeromorphicOn_ratlPolynomial₃U
|
||||
(d : ℂ → ℤ)
|
||||
(U : Set ℂ) :
|
||||
StronglyMeromorphicOn (∏ᶠ u, fun z ↦ (z - u) ^ d u) U := by
|
||||
intro z hz
|
||||
exact stronglyMeromorphicOn_ratlPolynomial₃ d z (trivial)
|
||||
|
||||
|
||||
theorem stronglyMeromorphicOn_divisor_ratlPolynomial₁
|
||||
{z : ℂ}
|
||||
@ -166,7 +173,10 @@ theorem stronglyMeromorphicOn_ratlPolynomial₃order
|
||||
have : (Function.mulSupport fun u z => (z - u) ^ d u).Infinite := by
|
||||
exact hd
|
||||
simp_rw [finprod_of_infinite_mulSupport this]
|
||||
sorry
|
||||
have : AnalyticAt ℂ (1 : ℂ → ℂ) z := by exact analyticAt_const
|
||||
rw [AnalyticAt.meromorphicAt_order this]
|
||||
rw [this.order_eq_zero_iff.2 (by simp)]
|
||||
simp
|
||||
|
||||
|
||||
theorem stronglyMeromorphicOn_divisor_ratlPolynomial
|
||||
|
Loading…
Reference in New Issue
Block a user