From 2b7ab1af9d2582f19d1547be63a2f2e64453011f Mon Sep 17 00:00:00 2001 From: Stefan Kebekus Date: Thu, 28 Nov 2024 18:24:08 +0100 Subject: [PATCH] Working --- Nevanlinna/stronglyMeromorphicOn_ratlPolynomial.lean | 12 +++++++++++- 1 file changed, 11 insertions(+), 1 deletion(-) diff --git a/Nevanlinna/stronglyMeromorphicOn_ratlPolynomial.lean b/Nevanlinna/stronglyMeromorphicOn_ratlPolynomial.lean index 005f635..948464b 100644 --- a/Nevanlinna/stronglyMeromorphicOn_ratlPolynomial.lean +++ b/Nevanlinna/stronglyMeromorphicOn_ratlPolynomial.lean @@ -63,6 +63,13 @@ theorem stronglyMeromorphicOn_ratlPolynomial₃ apply analyticOnNhd_const +theorem stronglyMeromorphicOn_ratlPolynomial₃U + (d : ℂ → ℤ) + (U : Set ℂ) : + StronglyMeromorphicOn (∏ᶠ u, fun z ↦ (z - u) ^ d u) U := by + intro z hz + exact stronglyMeromorphicOn_ratlPolynomial₃ d z (trivial) + theorem stronglyMeromorphicOn_divisor_ratlPolynomial₁ {z : ℂ} @@ -166,7 +173,10 @@ theorem stronglyMeromorphicOn_ratlPolynomial₃order have : (Function.mulSupport fun u z => (z - u) ^ d u).Infinite := by exact hd simp_rw [finprod_of_infinite_mulSupport this] - sorry + have : AnalyticAt ℂ (1 : ℂ → ℂ) z := by exact analyticAt_const + rw [AnalyticAt.meromorphicAt_order this] + rw [this.order_eq_zero_iff.2 (by simp)] + simp theorem stronglyMeromorphicOn_divisor_ratlPolynomial