nevanlinna/Nevanlinna/meromorphicOn.lean

186 lines
4.8 KiB
Plaintext
Raw Normal View History

2024-11-14 16:53:35 +01:00
import Mathlib.Analysis.Analytic.Meromorphic
import Nevanlinna.analyticAt
import Nevanlinna.divisor
import Nevanlinna.meromorphicAt
import Nevanlinna.stronglyMeromorphicOn
import Nevanlinna.mathlibAddOn
open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral
2024-11-15 12:16:41 +01:00
theorem MeromorphicOn.open_of_order_eq_top
{f : }
{U : Set }
(h₁f : MeromorphicOn f U) :
IsOpen { u : U | (h₁f u.1 u.2).order = } := by
apply isOpen_iff_forall_mem_open.mpr
intro z hz
simp at hz
2024-11-18 18:44:42 +01:00
have h₁z := hz
2024-11-15 12:16:41 +01:00
rw [MeromorphicAt.order_eq_top_iff] at hz
rw [eventually_nhdsWithin_iff] at hz
rw [eventually_nhds_iff] at hz
obtain ⟨t', h₁t', h₂t', h₃t'⟩ := hz
2024-11-16 13:24:50 +01:00
let t : Set U := Subtype.val ⁻¹' t'
use t
constructor
· intro w hw
simp
2024-11-18 18:44:42 +01:00
by_cases h₁w : w = z
· rwa [h₁w]
· --
rw [MeromorphicAt.order_eq_top_iff]
rw [eventually_nhdsWithin_iff]
rw [eventually_nhds_iff]
use t' \ {z.1}
constructor
· intro y h₁y h₂y
apply h₁t'
exact Set.mem_of_mem_diff h₁y
exact Set.mem_of_mem_inter_right h₁y
· constructor
· apply IsOpen.sdiff h₂t'
exact isClosed_singleton
· rw [Set.mem_diff]
constructor
· exact hw
· simp
exact Subtype.coe_ne_coe.mpr h₁w
2024-11-17 16:56:27 +01:00
2024-11-16 13:24:50 +01:00
· constructor
· exact isOpen_induced h₂t'
· exact h₃t'
2024-11-15 12:16:41 +01:00
2024-11-19 07:16:04 +01:00
2024-11-18 19:27:51 +01:00
theorem MeromorphicOn.open_of_order_neq_top
{f : }
{U : Set }
(h₁f : MeromorphicOn f U) :
IsOpen { u : U | (h₁f u.1 u.2).order ≠ } := by
apply isOpen_iff_forall_mem_open.mpr
intro z hz
simp at hz
let A := (h₁f z.1 z.2).eventually_eq_zero_or_eventually_ne_zero
rcases A with h|h
· rw [← (h₁f z.1 z.2).order_eq_top_iff] at h
tauto
· let A := (h₁f z.1 z.2).eventually_analyticAt
let B := Filter.Eventually.and h A
rw [eventually_nhdsWithin_iff] at B
rw [eventually_nhds_iff] at B
obtain ⟨t', h₁t', h₂t', h₃t'⟩ := B
let t : Set U := Subtype.val ⁻¹' t'
use t
constructor
· intro w hw
simp
by_cases h₁w : w = z
· rwa [h₁w]
· let B := h₁t' w hw
simp at B
have : (w : ) ≠ (z : ) := by exact Subtype.coe_ne_coe.mpr h₁w
let C := B this
let D := C.2.order_eq_zero_iff.2 C.1
rw [C.2.meromorphicAt_order, D]
simp
· constructor
· exact isOpen_induced h₂t'
· exact h₃t'
2024-11-19 16:33:33 +01:00
theorem MeromorphicOn.clopen_of_order_eq_top
2024-11-14 16:53:35 +01:00
{f : }
{U : Set }
(h₁f : MeromorphicOn f U) :
2024-11-19 16:33:33 +01:00
IsClopen { u : U | (h₁f u.1 u.2).order = } := by
2024-11-14 16:53:35 +01:00
2024-11-19 16:33:33 +01:00
constructor
· rw [← isOpen_compl_iff]
exact open_of_order_neq_top h₁f
· exact open_of_order_eq_top h₁f
2024-11-21 17:15:32 +01:00
2024-11-28 16:52:56 +01:00
theorem MeromorphicOn.order_ne_top'
{f : }
2024-11-21 17:15:32 +01:00
{U : Set }
2024-11-28 16:52:56 +01:00
(h₁f : MeromorphicOn f U)
2024-12-16 17:17:43 +01:00
(hU : IsConnected U) :
(∃ u : U, (h₁f u u.2).order ≠ ) ↔ (∀ u : U, (h₁f u u.2).order ≠ ) := by
2024-11-28 16:52:56 +01:00
2024-12-16 17:17:43 +01:00
constructor
· intro h₂f
let A := h₁f.clopen_of_order_eq_top
have : PreconnectedSpace U := by
apply isPreconnected_iff_preconnectedSpace.mp
exact IsConnected.isPreconnected hU
rw [isClopen_iff] at A
rcases A with h|h
· intro u
have : u ∉ (∅ : Set U) := by exact fun a => a
rw [← h] at this
simp at this
tauto
· obtain ⟨u, hU⟩ := h₂f
have A : u ∈ Set.univ := by trivial
rw [← h] at A
simp at A
tauto
· intro h₂f
let A := hU.nonempty
obtain ⟨v, hv⟩ := A
use ⟨v, hv⟩
exact h₂f ⟨v, hv⟩
theorem StronglyMeromorphicOn.order_ne_top
2024-11-28 16:52:56 +01:00
{f : }
{U : Set }
(h₁f : StronglyMeromorphicOn f U)
2024-12-16 17:17:43 +01:00
(hU : IsConnected U)
2024-11-28 16:52:56 +01:00
(h₂f : ∃ u : U, f u ≠ 0) :
∀ u : U, (h₁f u u.2).meromorphicAt.order ≠ := by
2024-12-16 17:17:43 +01:00
rw [← h₁f.meromorphicOn.order_ne_top' hU]
2024-11-28 16:52:56 +01:00
obtain ⟨u, hu⟩ := h₂f
use u
rw [← (h₁f u u.2).order_eq_zero_iff] at hu
rw [hu]
simp
2024-12-16 17:17:43 +01:00
theorem MeromorphicOn.nonvanish_of_order_ne_top
{f : }
{U : Set }
(h₁f : MeromorphicOn f U)
(h₂f : ∃ u : U, (h₁f u u.2).order ≠ )
(h₁U : IsConnected U)
(h₂U : interior U ≠ ∅) :
∃ u ∈ U, f u ≠ 0 := by
by_contra hCon
push_neg at hCon
have : ∃ u : U, (h₁f u u.2).order = := by
obtain ⟨v, h₁v⟩ := Set.nonempty_iff_ne_empty'.2 h₂U
have h₂v : v ∈ U := by apply interior_subset h₁v
use ⟨v, h₂v⟩
rw [MeromorphicAt.order_eq_top_iff]
rw [eventually_nhdsWithin_iff]
rw [eventually_nhds_iff]
use interior U
constructor
· intro y h₁y h₂y
exact hCon y (interior_subset h₁y)
· simp [h₁v]
let A := h₁f.order_ne_top' h₁U
rw [← not_iff_not] at A
push_neg at A
have B := A.2 this
obtain ⟨u, hu⟩ := h₂f
tauto