2024-05-27 11:22:23 +02:00
|
|
|
%
|
|
|
|
% Do not edit the following line. The text is automatically updated by
|
|
|
|
% subversion.
|
|
|
|
%
|
|
|
|
\svnid{$Id: 01-intro.tex 727 2024-05-06 20:00:54Z rousseau $}
|
|
|
|
\selectlanguage{british}
|
|
|
|
|
2024-06-05 13:50:15 +02:00
|
|
|
|
|
|
|
\section{The Albanese for compact manifolds}
|
|
|
|
|
|
|
|
\begin{defn}[The Albanese of a compact Kähler manifold]\label{def:1-1}%
|
2024-06-06 15:19:18 +02:00
|
|
|
Let $X$ be a compact Kähler manifold. An Albanese of the manifold $X$ is a
|
|
|
|
compact torus $A$ and a morphism $a : X → A$, such that the following
|
|
|
|
universal property holds: If $S$ is any other compact torus and if $s : X →
|
|
|
|
S$, is any morphism, then there exists a unique morphism $c$ making the
|
2024-06-05 13:50:15 +02:00
|
|
|
following diagram commutative,
|
|
|
|
\[
|
2024-06-05 15:17:20 +02:00
|
|
|
\begin{tikzcd}
|
|
|
|
X \ar[r, "a"'] \ar[rr, "s", bend left=20] & A \ar[r, "∃!c"'] & S.
|
2024-06-03 14:28:57 +02:00
|
|
|
\end{tikzcd}
|
|
|
|
\]
|
2024-06-05 13:50:15 +02:00
|
|
|
\end{defn}
|
|
|
|
|
|
|
|
\begin{rem}
|
2024-06-06 15:19:18 +02:00
|
|
|
If it exists, the universal property guarantees that the Albanese of
|
2024-06-05 13:50:15 +02:00
|
|
|
Definition~\ref{def:1-1} is unique up to unique morphism, allowing us to speak
|
|
|
|
of ``the Albanese''. When precision is required, we denote the Albanese as
|
2024-06-03 14:28:57 +02:00
|
|
|
\[
|
2024-06-06 15:19:18 +02:00
|
|
|
\alb (X) : X → \Alb X.
|
2024-06-03 14:28:57 +02:00
|
|
|
\]
|
2024-06-05 13:50:15 +02:00
|
|
|
\end{rem}
|
|
|
|
|
|
|
|
|
|
|
|
\section{The Albanese for compact pairs with trivial boundary}
|
|
|
|
|
|
|
|
\todo{define torus quotient}
|
|
|
|
|
|
|
|
|
2024-06-06 15:19:18 +02:00
|
|
|
\begin{defn}[The $\cC$-Albanese of a compact pair with trivial boundary]\label{def:1-2}%
|
|
|
|
Let $X$ be a compact Kähler manifold. An Albanese of the $\cC$-pair $(X,0)$
|
|
|
|
is a torus quotient $(A, Δ_A)$ and a $\cC$-morphism
|
2024-06-03 16:42:00 +02:00
|
|
|
\[
|
2024-06-06 15:19:18 +02:00
|
|
|
a : (X,0) → (A, Δ_A),
|
2024-06-03 16:42:00 +02:00
|
|
|
\]
|
2024-06-06 15:19:18 +02:00
|
|
|
such that the following universal property holds: If $(S, Δ_S)$ is any other
|
|
|
|
torus quotient and if $s : (X,0) → (S, Δ_S)$ is any $\cC$-morphism, then there
|
|
|
|
exists a unique $\cC$-morphism $c$ making the following diagram commutative,
|
2024-05-27 11:22:23 +02:00
|
|
|
\[
|
2024-06-05 13:50:15 +02:00
|
|
|
\begin{tikzcd}[column sep=2.4cm]
|
|
|
|
(X, 0) \ar[r, "a"'] \ar[rr, "s", bend left=10] & (A, Δ_A) \ar[r, "∃!c"'] & (S, Δ_S).
|
2024-05-27 11:22:23 +02:00
|
|
|
\end{tikzcd}
|
|
|
|
\]
|
2024-06-05 13:50:15 +02:00
|
|
|
\end{defn}
|
|
|
|
|
2024-05-27 11:22:23 +02:00
|
|
|
\begin{rem}
|
2024-06-06 15:19:18 +02:00
|
|
|
If it exists, the universal property guarantees that the Albanese of
|
|
|
|
Definition~\ref{def:1-2} is unique up to unique morphism, allowing us to speak
|
|
|
|
of ``the Albanese''. When precision is required, we denote the Albanese as
|
2024-06-05 13:50:15 +02:00
|
|
|
\[
|
2024-06-06 15:19:18 +02:00
|
|
|
\alb (X,0) : (X,0 → \Alb (X,0).
|
2024-06-05 13:50:15 +02:00
|
|
|
\]
|
2024-06-06 15:19:18 +02:00
|
|
|
\end{rem}
|
2024-06-05 13:50:15 +02:00
|
|
|
|
|
|
|
\begin{thm}[The Albanese of a $\cC$-pair]\label{thm:22-1} %
|
2024-06-06 15:19:18 +02:00
|
|
|
Let $X$ be a compact Kähler manifold. If $q^+_{\Alb}(X,0) < ∞$, then an
|
|
|
|
Albanese of $(X,0)$ exists.
|
2024-05-27 11:22:23 +02:00
|
|
|
\end{thm}
|
|
|
|
|
|
|
|
|
|
|
|
% !TEX root = orbiAlb1
|