orbiAlb4/01-intro.tex

104 lines
3.4 KiB
TeX
Raw Normal View History

2024-05-27 11:22:23 +02:00
%
% Do not edit the following line. The text is automatically updated by
% subversion.
%
\svnid{$Id: 01-intro.tex 727 2024-05-06 20:00:54Z rousseau $}
\selectlanguage{british}
2024-06-05 13:50:15 +02:00
\section{The Albanese for compact manifolds}
\begin{defn}[The Albanese of a compact Kähler manifold]\label{def:1-1}%
Let $X$ be a compact Kähler manifold and let $x ∈ X$ be any point. An
Albanese of the pointed manifold $X$, $x \in X$ is a compact torus quotient
$A$ and a pointed $\cC$-morphism
2024-06-03 14:28:57 +02:00
\[
2024-06-05 13:50:15 +02:00
a : X → A, \quad x \mapsto 0_A
2024-06-03 14:28:57 +02:00
\]
2024-06-05 13:50:15 +02:00
such that the following universal property holds: If $S$ is any other compact
torus and if
2024-06-03 14:28:57 +02:00
\[
2024-06-05 13:50:15 +02:00
s : X → S, \quad x \mapsto 0_S
\]
is any pointed morphism, then there exists a unique morphism $c$ making the
following diagram commutative,
\[
\begin{tikzcd}[column sep=2.4cm]
X \ar[r, "a"'] \ar[rr, "s", bend left=10] & A \ar[r, "∃!c"'] & S.
2024-06-03 14:28:57 +02:00
\end{tikzcd}
\]
2024-06-05 13:50:15 +02:00
\end{defn}
\begin{rem}
The morphism $c$ of Definition~\ref{def:1-1} maps $0_A$ to $0_S$ and is
therefore a Lie group morphism.
\end{rem}
2024-06-03 14:28:57 +02:00
2024-06-05 13:50:15 +02:00
\begin{rem}
The universal property guarantees that the Albanese of
Definition~\ref{def:1-1} is unique up to unique morphism, allowing us to speak
of ``the Albanese''. When precision is required, we denote the Albanese as
2024-06-03 14:28:57 +02:00
\[
2024-06-05 13:50:15 +02:00
\alb_x (X) : X → \Alb_x X.
2024-06-03 14:28:57 +02:00
\]
2024-06-05 13:50:15 +02:00
\end{rem}
\section{The Albanese for compact pairs with trivial boundary}
\todo{define torus quotient}
\begin{defn}[The $\cC$-Albanese of a compact Kähler manifold]\label{def:1-2}%
Let $X$ be a compact Kähler manifold and let $x ∈ X$ be any point. An
Albanese of the pointed $\cC$-pair $(X,0)$, $x \in X$ is a pointed torus
quotient $(A, Δ_A)$, $a \in A$ and a pointed $\cC$-morphism
2024-06-03 16:42:00 +02:00
\[
2024-06-05 13:50:15 +02:00
a : (X,0) → (A, Δ_A), \quad x \mapsto a
2024-06-03 16:42:00 +02:00
\]
2024-06-05 13:50:15 +02:00
such that the following universal property holds: If $(S, Δ_S)$, $s ∈ S$ is
any other pointed torus quotient and if $s : (X,0)(S, Δ_S)$ is any pointed
$\cC$-morphism, then there exists a unique pointed $\cC$-morphism $c$ making
the following diagram commutative,
2024-05-27 11:22:23 +02:00
\[
2024-06-05 13:50:15 +02:00
\begin{tikzcd}[column sep=2.4cm]
(X, 0) \ar[r, "a"'] \ar[rr, "s", bend left=10] & (A, Δ_A) \ar[r, "∃!c"'] & (S, Δ_S).
2024-05-27 11:22:23 +02:00
\end{tikzcd}
\]
2024-06-05 13:50:15 +02:00
\end{defn}
2024-05-27 11:22:23 +02:00
\begin{rem}
2024-06-05 13:50:15 +02:00
The $\cC$-morphism $c$ of Definition~\ref{def:1-2} maps $a$ to $s$ and is
therefore a morphism of pointed pairs.
2024-05-27 11:22:23 +02:00
\end{rem}
2024-06-05 13:50:15 +02:00
\begin{defn}[The $\cC$-Albanese of a compact Kähler manifold]\label{def:1-1}%
Let $X$ be a compact Kähler manifold and let $x ∈ X$ be any point. An
Albanese of $(X,0)$ is a pointed torus quotient $\bigl(\Alb_x(X,0),
Δ_{\Alb_x(X,0)}\bigr)$, $a \in \Alb_x(X,0)$ and a $\cC$-morphism
\[
\alb_x(X,0) : (X,0) → \bigl(\Alb_x(X,0), Δ_{\Alb_x(X,0)}\bigr)
\]
such that the following holds.
\begin{enumerate}
\item The morphism $\alb_x(X,0)$ sends $x$ to $a$.
\item If $(S, Δ_S)$, $s ∈ S$ is any other pointed torus quotient and if $s :
(X,0) → (S, Δ_S)$ is any $\cC$-morphism that sends $x$ to $s$, then $s$
factors uniquely as
\[
\begin{tikzcd}[column sep=2.4cm]
(X, 0) \ar[r, "\alb_x(X{,}D)"'] \ar[rr, "s", bend left=10] & \bigl(\Alb_x(X,0), Δ_{\Alb_x(X,0)}\bigr) \ar[r, "∃!c"'] & (S, Δ_S).
\end{tikzcd}
\]
\end{enumerate}
\end{defn}
\begin{thm}[The Albanese of a $\cC$-pair]\label{thm:22-1} %
Let $(X, D)$ be a $\cC$-pair where $X$ is compact Kähler. If $q⁺_{\Alb}(X,D)
< ∞$, then an Albanese of $(X,D)$ exists.
2024-05-27 11:22:23 +02:00
\end{thm}
% !TEX root = orbiAlb1