Working…
This commit is contained in:
		| @@ -9,4 +9,4 @@ agrees with notions from the literature in the smooth case, but it is better | ||||
| behaved in the singular setting, perhaps more conceptual, and has functorial | ||||
| properties that relate it to minimal model theory. | ||||
|  | ||||
| % !TEX root = orbiAlb1 | ||||
| % !TEX root = orbiAlb4 | ||||
|   | ||||
							
								
								
									
										75
									
								
								01-intro.tex
									
									
									
									
									
								
							
							
						
						
									
										75
									
								
								01-intro.tex
									
									
									
									
									
								
							| @@ -9,18 +9,10 @@ | ||||
| \section{The Albanese for compact manifolds} | ||||
|  | ||||
| \begin{defn}[The Albanese of a compact Kähler manifold]\label{def:1-1}% | ||||
|   Let $X$ be a compact Kähler manifold and let $x ∈ X$ be any point.  An | ||||
|   Albanese of the pointed manifold $X$, $x \in X$ is a compact torus quotient | ||||
|   $A$ and a pointed $\cC$-morphism | ||||
|   \[ | ||||
|     a : X → A, \quad x \mapsto 0_A | ||||
|   \] | ||||
|   such that the following universal property holds:  If $S$ is any other compact | ||||
|   torus and if | ||||
|   \[ | ||||
|     s : X → S, \quad x \mapsto 0_S | ||||
|   \] | ||||
|   is any pointed morphism, then there exists a unique morphism $c$ making the | ||||
|   Let $X$ be a compact Kähler manifold.  An Albanese of the manifold $X$ is a | ||||
|   compact torus $A$ and a morphism $a : X → A$, such that the following | ||||
|   universal property holds:  If $S$ is any other compact torus and if $s : X → | ||||
|   S$, is any morphism, then there exists a unique morphism $c$ making the | ||||
|   following diagram commutative, | ||||
|   \[ | ||||
|     \begin{tikzcd} | ||||
| @@ -30,16 +22,11 @@ | ||||
| \end{defn} | ||||
|  | ||||
| \begin{rem} | ||||
|   The morphism $c$ of Definition~\ref{def:1-1} maps $0_A$ to $0_S$ and is | ||||
|   therefore a Lie group morphism. | ||||
| \end{rem} | ||||
|  | ||||
| \begin{rem} | ||||
|   The universal property guarantees that the Albanese of | ||||
|   If it exists, the universal property guarantees that the Albanese of | ||||
|   Definition~\ref{def:1-1} is unique up to unique morphism, allowing us to speak | ||||
|   of ``the Albanese''.  When precision is required, we denote the Albanese as | ||||
|   \[ | ||||
|     \alb_x (X) : X → \Alb_x X. | ||||
|     \alb (X) : X → \Alb X. | ||||
|   \] | ||||
| \end{rem} | ||||
|  | ||||
| @@ -49,17 +36,15 @@ | ||||
| \todo{define torus quotient} | ||||
|  | ||||
|  | ||||
| \begin{defn}[The $\cC$-Albanese of a compact Kähler manifold]\label{def:1-2}% | ||||
|   Let $X$ be a compact Kähler manifold and let $x ∈ X$ be any point.  An | ||||
|   Albanese of the pointed $\cC$-pair $(X,0)$, $x \in X$ is a pointed torus | ||||
|   quotient $(A, Δ_A)$, $a \in A$ and a pointed $\cC$-morphism | ||||
| \begin{defn}[The $\cC$-Albanese of a compact pair with trivial boundary]\label{def:1-2}% | ||||
|   Let $X$ be a compact Kähler manifold.  An Albanese of the $\cC$-pair $(X,0)$ | ||||
|   is a torus quotient $(A, Δ_A)$ and a $\cC$-morphism | ||||
|   \[ | ||||
|     a : (X,0) → (A, Δ_A), \quad x \mapsto a | ||||
|     a : (X,0) → (A, Δ_A), | ||||
|   \] | ||||
|   such that the following universal property holds:  If $(S, Δ_S)$, $s ∈ S$ is | ||||
|   any other pointed torus quotient and if $s : (X,0) → (S, Δ_S)$ is any pointed | ||||
|   $\cC$-morphism, then there exists a unique pointed $\cC$-morphism $c$ making | ||||
|   the following diagram commutative, | ||||
|   such that the following universal property holds:  If $(S, Δ_S)$ is any other | ||||
|   torus quotient and if $s : (X,0) → (S, Δ_S)$ is any $\cC$-morphism, then there | ||||
|   exists a unique $\cC$-morphism $c$ making the following diagram commutative, | ||||
|   \[ | ||||
|     \begin{tikzcd}[column sep=2.4cm] | ||||
|       (X, 0) \ar[r, "a"'] \ar[rr, "s", bend left=10] & (A, Δ_A) \ar[r, "∃!c"'] & (S, Δ_S). | ||||
| @@ -68,35 +53,17 @@ | ||||
| \end{defn} | ||||
|  | ||||
| \begin{rem} | ||||
|   The $\cC$-morphism $c$ of Definition~\ref{def:1-2} maps $a$ to $s$ and is | ||||
|   therefore a morphism of pointed pairs.   | ||||
|   If it exists, the universal property guarantees that the Albanese of | ||||
|   Definition~\ref{def:1-2} is unique up to unique morphism, allowing us to speak | ||||
|   of ``the Albanese''.  When precision is required, we denote the Albanese as | ||||
|   \[ | ||||
|     \alb (X,0) : (X,0 → \Alb (X,0). | ||||
|   \] | ||||
| \end{rem} | ||||
|  | ||||
| \begin{defn}[The $\cC$-Albanese of a compact Kähler manifold]\label{def:1-1}% | ||||
|   Let $X$ be a compact Kähler manifold and let $x ∈ X$ be any point.  An | ||||
|   Albanese of $(X,0)$ is a pointed torus quotient $\bigl(\Alb_x(X,0), | ||||
|   Δ_{\Alb_x(X,0)}\bigr)$, $a \in \Alb_x(X,0)$ and  a $\cC$-morphism | ||||
|   \[ | ||||
|     \alb_x(X,0) : (X,0) → \bigl(\Alb_x(X,0), Δ_{\Alb_x(X,0)}\bigr) | ||||
|   \] | ||||
|   such that the following holds. | ||||
|   \begin{enumerate} | ||||
|     \item The morphism $\alb_x(X,0)$ sends $x$ to $a$. | ||||
|  | ||||
|     \item If $(S, Δ_S)$, $s ∈ S$ is any other pointed torus quotient and if $s : | ||||
|     (X,0) → (S, Δ_S)$ is any $\cC$-morphism that sends $x$ to $s$, then $s$ | ||||
|     factors uniquely as | ||||
|     \[ | ||||
|       \begin{tikzcd}[column sep=2.4cm] | ||||
|         (X, 0) \ar[r, "\alb_x(X{,}D)"'] \ar[rr, "s", bend left=10] & \bigl(\Alb_x(X,0), Δ_{\Alb_x(X,0)}\bigr) \ar[r, "∃!c"'] & (S, Δ_S). | ||||
|       \end{tikzcd} | ||||
|     \] | ||||
|   \end{enumerate} | ||||
| \end{defn} | ||||
|  | ||||
| \begin{thm}[The Albanese of a $\cC$-pair]\label{thm:22-1} % | ||||
|   Let $(X, D)$ be a $\cC$-pair where $X$ is compact Kähler.  If $q⁺_{\Alb}(X,D) | ||||
|   < ∞$, then an Albanese of $(X,D)$ exists. | ||||
|   Let $X$ be a compact Kähler manifold.  If $q^+_{\Alb}(X,0) < ∞$, then an | ||||
|   Albanese of $(X,0)$ exists. | ||||
| \end{thm} | ||||
|  | ||||
|  | ||||
|   | ||||
| @@ -5,34 +5,14 @@ | ||||
| \svnid{$Id: 01-intro.tex 727 2024-05-06 20:00:54Z rousseau $} | ||||
| \selectlanguage{british} | ||||
|  | ||||
| \section{The $\cC$-Albanese morphism in the presence of rational curves} | ||||
| \section{The Albanese morphism in the presence of rational curves} | ||||
| \subversionInfo | ||||
|  | ||||
| \begin{setting}\label{set:1} | ||||
|   Let $X$ be a compact Kähler manifold and let $x \in X$ be any point. Assume | ||||
|   that an Albanese of the $\cC$-pair $(X,0)$ exists. | ||||
| \begin{setting}\label{set:1}% | ||||
|   Let $X$ be a compact Kähler manifold. Assume that an Albanese of the | ||||
|   $\cC$-pair $(X,0)$ exists. | ||||
| \end{setting}   | ||||
|  | ||||
| \begin{rem}[Mapping subvarieties to a point] | ||||
|   Assume Setting~\ref{set:1}.  If $x_1, x_2 \in X$ are any two points, it | ||||
|   follows from the universal property of the Albanese that the varieties | ||||
|   $\Alb_{x_1}(X,0)$ and $\Alb_{x_2}(X,0)$ are isomorphic. To be more precise, | ||||
|   there exists a unique Lie group isomorphism $t$ that makes the following | ||||
|   diagram commute, | ||||
|   \[ | ||||
|     \begin{tikzcd}[column sep=2cm] | ||||
|       X \ar[r, "\alb_{x_1}(X{,}0)"] \ar[d, equal] & \Alb_{x_1}(X,0) \ar[d, two heads, hook, "t_{x_1x_2}"] \\ | ||||
|       X \ar[r, "\alb_{x_2}(X{,}0)"'] & \Alb_{x_2}(X,0). | ||||
|     \end{tikzcd} | ||||
|   \] | ||||
|   If $Y \subseteq X$ is any subvariety, then the following two statements are equivalent. | ||||
|   \begin{itemize} | ||||
|     \item The morphism $\alb_{x_1}(X,0)$ maps $Y$ to a point. | ||||
|     \item The morphism $\alb_{x_2}(X,0)$ maps $Y$ to a point. | ||||
|   \end{itemize} | ||||
|   If the conditions are satisfied, then say that \emph{the Albanese morphism of | ||||
|   $(X,0)$ maps $Y$ to a point}. | ||||
| \end{rem} | ||||
|  | ||||
| \begin{thm}\label{thm:1}% | ||||
|   Assume Setting~\ref{set:1}.  Then, the Albanese morphism of $(X,0)$ maps all | ||||
| @@ -50,22 +30,42 @@ | ||||
|    | ||||
|   Given that $X$ is smooth, recall from \cite{orbiAlb1} that $\eta$ is a | ||||
|   $\cC$-morphism, between $\cC$-pairs $(\bP¹, 0)$ and $(X, 0)$. Since | ||||
|   $\Alb_0(\bP¹,0)$ exists, the universal property of the Albanese yields a | ||||
|   $\Alb(\bP¹,0)$ exists, the universal property of the Albanese yields a | ||||
|   diagram | ||||
|   \[ | ||||
|     \begin{tikzcd}[column sep=2cm] | ||||
|       \bP¹ \ar[r, "\alb_0(\bP¹{,}0)"] \ar[d, "n"'] & \Alb_0(\bP¹,0) \ar[d] \\ | ||||
|       X \ar[r, "\alb_{x'}(X{,}0)"'] & \Alb_{x'}(X,0). | ||||
|       \bP¹ \ar[r, "\alb(\bP¹{,}0)"] \ar[d, "n"'] & \Alb(\bP¹,0) \ar[d] \\ | ||||
|       X \ar[r, "\alb(X{,}0)"'] & \Alb(X,0). | ||||
|     \end{tikzcd} | ||||
|   \] | ||||
|   The claim follows immediately once we observe that $\Alb_0(\bP¹,0)$ is a point. | ||||
|   The claim follows immediately once we observe that $\Alb(\bP¹,0)$ is a point. | ||||
| \end{proof} | ||||
|  | ||||
| \begin{cor}\label{cor:2}% | ||||
|   In Setting~\ref{set:1}, let $\mu : X \to Y$ be a morphism to a normal | ||||
|   projective variety.  If all fibres of $\mu$ are rationally chain connected, | ||||
|   then $\alb(X,0)$ factors via $\mu$, | ||||
|   \[ | ||||
|     \begin{tikzcd} | ||||
|       X \ar[r, "\mu"'] \ar[rr, bend left=15, "\alb(X{,}0)"] & Y \ar[r, "\exists!\:\beta"'] & \Alb(X,0). | ||||
|     \end{tikzcd} | ||||
|   \] | ||||
| \end{cor} | ||||
|  | ||||
| \begin{cor}\label{cor:3}% | ||||
|   In Setting~\ref{set:1}, assume that $X$ is rationally connected.  Then, | ||||
|   $\Alb_x(X,0)$ is a point. | ||||
|   $\Alb(X,0)$ is a point. | ||||
| \end{cor} | ||||
|  | ||||
| \todo{ | ||||
|   \begin{itemize} | ||||
|     \item Factorization via minimal model. | ||||
|     \item Independence of bimeromorphic model. | ||||
|     \item Factorization via MRC quotient. | ||||
|   \end{itemize} | ||||
|  | ||||
| } | ||||
|  | ||||
| \begin{example}[Theorem~\ref{thm:1} is wrong for singular spaces] | ||||
|   Let $\pi : S \to \bP¹$ be one of the rational ruled ``Hirzebruch'' surfaces. | ||||
|   Let $C_S \subset S$ be any section.  Construct a commutative diagram as | ||||
| @@ -111,17 +111,6 @@ | ||||
| \begin{itemize} | ||||
|   \item \todo{Need example where Theorem~\ref{thm:1} fails if $X$ is singular.} | ||||
| \end{itemize} | ||||
|  | ||||
| \begin{cor}\label{cor:2} | ||||
|   Let $X$ be a projective manifold and let $x \in X$ be any point.  Let $\mu : X | ||||
|   \to Y$ be a morphism to a normal projective variety.  If all fibres of $\mu$ | ||||
|   are rationally chain connected, then $\alb_x(X,0)$ factors via $\mu$, | ||||
|   \[ | ||||
|     \begin{tikzcd} | ||||
|       X \ar[r, "\mu"'] \ar[rr, bend left=15, "\alb_x(X{,}0)"] & Y \ar[r, "\exists!\:\beta"'] & \Alb_x(X,0). | ||||
|     \end{tikzcd} | ||||
|   \] | ||||
| \end{cor} | ||||
|    | ||||
| \begin{rem} | ||||
|   --- | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Stefan Kebekus
					Stefan Kebekus