nevanlinna/Nevanlinna/laplace2.lean

71 lines
2.1 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Mathlib.Analysis.InnerProductSpace.Basic
import Mathlib.Analysis.InnerProductSpace.PiL2
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Analysis.Calculus.ContDiff.Bounds
import Mathlib.Analysis.Calculus.FDeriv.Symmetric
open BigOperators
open Finset
variable {E : Type*} [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E]
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace F]
#check EuclideanSpace.norm_eq
#check EuclideanSpace.dist_eq
noncomputable def Laplace₁ (n : ) (f : EuclideanSpace (Fin n) → F) : EuclideanSpace (Fin n) → F := by
let e : Fin n → EuclideanSpace (Fin n) := fun i ↦ EuclideanSpace.single i (1 : )
exact fun z ↦ ∑ i, iteratedFDeriv 2 f z ![e i, e i]
noncomputable def Laplace₂
[Fintype ι]
(v : Basis ι E)
(hv : Orthonormal v)
(f : E → F) :
E → F :=
fun z ↦ ∑ i, iteratedFDeriv 2 f z ![v i, v i]
#check ContinuousMultilinearMap.map_sum_finset
theorem LaplaceIndep
[Fintype ι]
(v₁ : Basis ι E)
(hv₁ : Orthonormal v₁)
(v₂ : Basis ι E)
(hv₂ : Orthonormal v₂)
(f : E → F) :
∑ i, iteratedFDeriv 2 f z ![v₁ i, v₁ i] = ∑ i, iteratedFDeriv 2 f z ![v₂ i, v₂ i] := by
have (v : E) : v = ∑ j, ⟪v₁ j, v⟫_ • (v₁ j) :=
sorry
conv =>
right
arg 2
intro i
rw [this (v₂ i)]
rw [this (v₂ i)]
conv =>
right
arg 2
intro i
--rw [ContinuousMultilinearMap.map_sum_finset]
have v : E := by sorry
let t := ![∑ j, ⟪v₁ j, v⟫_ • (v₁ j), ∑ j, ⟪v₁ j, v⟫_ • (v₁ j)]
simp at t
have L : ContinuousMultilinearMap (fun (_ : Fin 2) ↦ E) F := by exact iteratedFDeriv 2 f z
--have α : Fin 2 → Type* := by exact fun _ ↦ ι
have g : (i : Fin 2) → ι → E := by exact fun _ ↦ (fun j ↦ ⟪v₁ j, v⟫_ • (v₁ j))
have A : (i : Fin 2) → Finset ι := by exact fun _ ↦ Finset.univ
let X := ContinuousMultilinearMap.map_sum_finset
(iteratedFDeriv 2 f z)
(fun _ ↦ (fun j ↦ ⟪v₁ j, v⟫_ • (v₁ j)))
(fun _ ↦ Finset.univ)
simp at X
sorry