nevanlinna/Nevanlinna/laplace2.lean

71 lines
2.1 KiB
Plaintext
Raw Normal View History

2024-06-23 21:13:01 +02:00
import Mathlib.Analysis.InnerProductSpace.Basic
import Mathlib.Analysis.InnerProductSpace.PiL2
import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Analysis.Calculus.ContDiff.Bounds
import Mathlib.Analysis.Calculus.FDeriv.Symmetric
open BigOperators
open Finset
variable {E : Type*} [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E]
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace F]
#check EuclideanSpace.norm_eq
#check EuclideanSpace.dist_eq
noncomputable def Laplace₁ (n : ) (f : EuclideanSpace (Fin n) → F) : EuclideanSpace (Fin n) → F := by
let e : Fin n → EuclideanSpace (Fin n) := fun i ↦ EuclideanSpace.single i (1 : )
exact fun z ↦ ∑ i, iteratedFDeriv 2 f z ![e i, e i]
noncomputable def Laplace₂
[Fintype ι]
(v : Basis ι E)
(hv : Orthonormal v)
(f : E → F) :
E → F :=
fun z ↦ ∑ i, iteratedFDeriv 2 f z ![v i, v i]
2024-06-24 07:58:04 +02:00
#check ContinuousMultilinearMap.map_sum_finset
2024-06-23 21:13:01 +02:00
theorem LaplaceIndep
[Fintype ι]
(v₁ : Basis ι E)
(hv₁ : Orthonormal v₁)
(v₂ : Basis ι E)
(hv₂ : Orthonormal v₂)
(f : E → F) :
∑ i, iteratedFDeriv 2 f z ![v₁ i, v₁ i] = ∑ i, iteratedFDeriv 2 f z ![v₂ i, v₂ i] := by
have (v : E) : v = ∑ j, ⟪v₁ j, v⟫_ • (v₁ j) :=
sorry
conv =>
right
arg 2
intro i
rw [this (v₂ i)]
rw [this (v₂ i)]
conv =>
right
arg 2
intro i
2024-06-24 07:58:04 +02:00
--rw [ContinuousMultilinearMap.map_sum_finset]
have v : E := by sorry
let t := ![∑ j, ⟪v₁ j, v⟫_ • (v₁ j), ∑ j, ⟪v₁ j, v⟫_ • (v₁ j)]
simp at t
have L : ContinuousMultilinearMap (fun (_ : Fin 2) ↦ E) F := by exact iteratedFDeriv 2 f z
--have α : Fin 2 → Type* := by exact fun _ ↦ ι
have g : (i : Fin 2) → ι → E := by exact fun _ ↦ (fun j ↦ ⟪v₁ j, v⟫_ • (v₁ j))
have A : (i : Fin 2) → Finset ι := by exact fun _ ↦ Finset.univ
let X := ContinuousMultilinearMap.map_sum_finset
(iteratedFDeriv 2 f z)
(fun _ ↦ (fun j ↦ ⟪v₁ j, v⟫_ • (v₁ j)))
(fun _ ↦ Finset.univ)
simp at X
2024-06-23 21:13:01 +02:00
sorry