import Mathlib.Analysis.InnerProductSpace.Basic import Mathlib.Analysis.InnerProductSpace.PiL2 import Mathlib.Algebra.BigOperators.Basic import Mathlib.Analysis.Calculus.ContDiff.Bounds import Mathlib.Analysis.Calculus.FDeriv.Symmetric open BigOperators open Finset variable {E : Type*} [NormedAddCommGroup E] [InnerProductSpace ℝ E] [FiniteDimensional ℝ E] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F] #check EuclideanSpace.norm_eq #check EuclideanSpace.dist_eq noncomputable def Laplace₁ (n : ℕ) (f : EuclideanSpace ℝ (Fin n) → F) : EuclideanSpace ℝ (Fin n) → F := by let e : Fin n → EuclideanSpace ℝ (Fin n) := fun i ↦ EuclideanSpace.single i (1 : ℝ) exact fun z ↦ ∑ i, iteratedFDeriv ℝ 2 f z ![e i, e i] noncomputable def Laplace₂ [Fintype ι] (v : Basis ι ℝ E) (hv : Orthonormal ℝ v) (f : E → F) : E → F := fun z ↦ ∑ i, iteratedFDeriv ℝ 2 f z ![v i, v i] #check ContinuousMultilinearMap.map_sum_finset theorem LaplaceIndep [Fintype ι] (v₁ : Basis ι ℝ E) (hv₁ : Orthonormal ℝ v₁) (v₂ : Basis ι ℝ E) (hv₂ : Orthonormal ℝ v₂) (f : E → F) : ∑ i, iteratedFDeriv ℝ 2 f z ![v₁ i, v₁ i] = ∑ i, iteratedFDeriv ℝ 2 f z ![v₂ i, v₂ i] := by have (v : E) : v = ∑ j, ⟪v₁ j, v⟫_ℝ • (v₁ j) := sorry conv => right arg 2 intro i rw [this (v₂ i)] rw [this (v₂ i)] conv => right arg 2 intro i --rw [ContinuousMultilinearMap.map_sum_finset] have v : E := by sorry let t := ![∑ j, ⟪v₁ j, v⟫_ℝ • (v₁ j), ∑ j, ⟪v₁ j, v⟫_ℝ • (v₁ j)] simp at t have L : ContinuousMultilinearMap ℝ (fun (_ : Fin 2) ↦ E) F := by exact iteratedFDeriv ℝ 2 f z --have α : Fin 2 → Type* := by exact fun _ ↦ ι have g : (i : Fin 2) → ι → E := by exact fun _ ↦ (fun j ↦ ⟪v₁ j, v⟫_ℝ • (v₁ j)) have A : (i : Fin 2) → Finset ι := by exact fun _ ↦ Finset.univ let X := ContinuousMultilinearMap.map_sum_finset (iteratedFDeriv ℝ 2 f z) (fun _ ↦ (fun j ↦ ⟪v₁ j, v⟫_ℝ • (v₁ j))) (fun _ ↦ Finset.univ) simp at X sorry