Compare commits
2 Commits
c8e1aacb15
...
7a1359308e
Author | SHA1 | Date |
---|---|---|
Stefan Kebekus | 7a1359308e | |
Stefan Kebekus | a7b0790675 |
|
@ -62,3 +62,21 @@ theorem CauchyRiemann₄ {F : Type*} [NormedAddCommGroup F] [NormedSpace ℂ F]
|
|||
right
|
||||
intro w
|
||||
rw [DifferentiableAt.fderiv_restrictScalars ℝ (h w)]
|
||||
|
||||
|
||||
theorem CauchyRiemann₅ {F : Type*} [NormedAddCommGroup F] [NormedSpace ℂ F] {f : ℂ → F} {z : ℂ} : (DifferentiableAt ℂ f z)
|
||||
→ partialDeriv ℝ Complex.I f z = Complex.I • partialDeriv ℝ 1 f z := by
|
||||
intro h
|
||||
unfold partialDeriv
|
||||
|
||||
conv =>
|
||||
left
|
||||
rw [DifferentiableAt.fderiv_restrictScalars ℝ h]
|
||||
simp
|
||||
rw [← mul_one Complex.I]
|
||||
rw [← smul_eq_mul]
|
||||
rw [ContinuousLinearMap.map_smul_of_tower (fderiv ℂ f z) Complex.I 1]
|
||||
conv =>
|
||||
right
|
||||
right
|
||||
rw [DifferentiableAt.fderiv_restrictScalars ℝ h]
|
||||
|
|
|
@ -53,13 +53,13 @@ theorem HarmonicOn_congr {f₁ f₂ : ℂ → F} {s : Set ℂ} (hs : IsOpen s) (
|
|||
rw [eq_comm]
|
||||
exact hf₁₂ x hx
|
||||
· intro z hz
|
||||
have : f₁ =ᶠ[nhds z] f₂ := by
|
||||
have : f₁ =ᶠ[nhds z] f₂ := by
|
||||
unfold Filter.EventuallyEq
|
||||
unfold Filter.Eventually
|
||||
simp
|
||||
refine mem_nhds_iff.mpr ?_
|
||||
use s
|
||||
constructor
|
||||
constructor
|
||||
· exact hf₁₂
|
||||
· constructor
|
||||
· exact hs
|
||||
|
@ -72,13 +72,13 @@ theorem HarmonicOn_congr {f₁ f₂ : ℂ → F} {s : Set ℂ} (hs : IsOpen s) (
|
|||
intro x hx
|
||||
exact hf₁₂ x hx
|
||||
· intro z hz
|
||||
have : f₁ =ᶠ[nhds z] f₂ := by
|
||||
have : f₁ =ᶠ[nhds z] f₂ := by
|
||||
unfold Filter.EventuallyEq
|
||||
unfold Filter.Eventually
|
||||
simp
|
||||
refine mem_nhds_iff.mpr ?_
|
||||
use s
|
||||
constructor
|
||||
constructor
|
||||
· exact hf₁₂
|
||||
· constructor
|
||||
· exact hs
|
||||
|
@ -102,10 +102,9 @@ theorem harmonicOn_add_harmonicOn_is_harmonicOn {f₁ f₂ : ℂ → F} {s : Set
|
|||
HarmonicOn (f₁ + f₂) s := by
|
||||
constructor
|
||||
· exact ContDiffOn.add h₁.1 h₂.1
|
||||
· rw [laplace_add h₁.1 h₂.1]
|
||||
simp
|
||||
intro z
|
||||
rw [h₁.2 z, h₂.2 z]
|
||||
· intro z hz
|
||||
rw [laplace_add_ContDiffOn hs h₁.1 h₂.1 z hz]
|
||||
rw [h₁.2 z hz, h₂.2 z hz]
|
||||
simp
|
||||
|
||||
|
||||
|
@ -177,6 +176,21 @@ theorem harmonic_iff_comp_CLE_is_harmonic {f : ℂ → F₁} {l : F₁ ≃L[ℝ]
|
|||
exact harmonic_comp_CLM_is_harmonic
|
||||
|
||||
|
||||
theorem harmonicOn_iff_comp_CLE_is_harmonicOn {f : ℂ → F₁} {s : Set ℂ} {l : F₁ ≃L[ℝ] G₁} (hs : IsOpen s) :
|
||||
HarmonicOn f s ↔ HarmonicOn (l ∘ f) s := by
|
||||
|
||||
constructor
|
||||
· have : l ∘ f = (l : F₁ →L[ℝ] G₁) ∘ f := by rfl
|
||||
rw [this]
|
||||
exact harmonicOn_comp_CLM_is_harmonicOn hs
|
||||
· have : f = (l.symm : G₁ →L[ℝ] F₁) ∘ l ∘ f := by
|
||||
funext z
|
||||
unfold Function.comp
|
||||
simp
|
||||
nth_rewrite 2 [this]
|
||||
exact harmonicOn_comp_CLM_is_harmonicOn hs
|
||||
|
||||
|
||||
theorem holomorphic_is_harmonic {f : ℂ → F₁} (h : Differentiable ℂ f) :
|
||||
Harmonic f := by
|
||||
|
||||
|
@ -233,6 +247,71 @@ theorem holomorphic_is_harmonic {f : ℂ → F₁} (h : Differentiable ℂ f) :
|
|||
exact fI_is_real_differentiable
|
||||
|
||||
|
||||
theorem holomorphicOn_is_harmonicOn {f : ℂ → F₁} {s : Set ℂ} (hs : IsOpen s) (h : DifferentiableOn ℂ f s) :
|
||||
HarmonicOn f s := by
|
||||
|
||||
-- f is real C²
|
||||
have f_is_real_C2 : ContDiffOn ℝ 2 f s :=
|
||||
ContDiffOn.restrict_scalars ℝ (DifferentiableOn.contDiffOn h hs)
|
||||
|
||||
have fI_is_real_differentiable : DifferentiableOn ℝ (partialDeriv ℝ 1 f) s := by
|
||||
intro z hz
|
||||
apply DifferentiableAt.differentiableWithinAt
|
||||
let ZZ := (f_is_real_C2 z hz).contDiffAt (IsOpen.mem_nhds hs hz)
|
||||
let AA := partialDeriv_contDiffAt ℝ ZZ 1
|
||||
exact AA.differentiableAt (by rfl)
|
||||
|
||||
constructor
|
||||
· -- f is two times real continuously differentiable
|
||||
exact f_is_real_C2
|
||||
|
||||
· -- Laplace of f is zero
|
||||
unfold Complex.laplace
|
||||
intro z hz
|
||||
simp
|
||||
have : DifferentiableAt ℂ f z := by
|
||||
sorry
|
||||
let ZZ := h z hz
|
||||
rw [CauchyRiemann₅ this]
|
||||
|
||||
-- This lemma says that partial derivatives commute with complex scalar
|
||||
-- multiplication. This is a consequence of partialDeriv_compContLin once we
|
||||
-- note that complex scalar multiplication is continuous ℝ-linear.
|
||||
have : ∀ v, ∀ s : ℂ, ∀ g : ℂ → F₁, Differentiable ℝ g → partialDeriv ℝ v (s • g) = s • (partialDeriv ℝ v g) := by
|
||||
intro v s g hg
|
||||
|
||||
-- Present scalar multiplication as a continuous ℝ-linear map. This is
|
||||
-- horrible, there must be better ways to do that.
|
||||
let sMuls : F₁ →L[ℝ] F₁ :=
|
||||
{
|
||||
toFun := fun x ↦ s • x
|
||||
map_add' := by exact fun x y => DistribSMul.smul_add s x y
|
||||
map_smul' := by exact fun m x => (smul_comm ((RingHom.id ℝ) m) s x).symm
|
||||
cont := continuous_const_smul s
|
||||
}
|
||||
|
||||
-- Bring the goal into a form that is recognized by
|
||||
-- partialDeriv_compContLin.
|
||||
have : s • g = sMuls ∘ g := by rfl
|
||||
rw [this]
|
||||
|
||||
rw [partialDeriv_compContLin ℝ hg]
|
||||
rfl
|
||||
|
||||
rw [this]
|
||||
rw [partialDeriv_comm f_is_real_C2 Complex.I 1]
|
||||
rw [CauchyRiemann₄ h]
|
||||
rw [this]
|
||||
rw [← smul_assoc]
|
||||
simp
|
||||
|
||||
-- Subgoals coming from the application of 'this'
|
||||
-- Differentiable ℝ (Real.partialDeriv 1 f)
|
||||
exact fI_is_real_differentiable
|
||||
-- Differentiable ℝ (Real.partialDeriv 1 f)
|
||||
exact fI_is_real_differentiable
|
||||
|
||||
|
||||
theorem re_of_holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
||||
Harmonic (Complex.reCLM ∘ f) := by
|
||||
apply harmonic_comp_CLM_is_harmonic
|
||||
|
@ -294,26 +373,31 @@ theorem log_normSq_of_holomorphicOn_is_harmonicOn
|
|||
· exact Real.pi_nonneg
|
||||
exact (AddEquivClass.map_ne_zero_iff starRingAut).mpr (h₂ z hz)
|
||||
exact h₂ z hz
|
||||
|
||||
|
||||
rw [HarmonicOn_congr hs this]
|
||||
simp
|
||||
|
||||
apply harmonic_add_harmonic_is_harmonic
|
||||
have : Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f = Complex.conjCLE ∘ Complex.log ∘ f := by
|
||||
funext z
|
||||
apply harmonicOn_add_harmonicOn_is_harmonicOn
|
||||
exact hs
|
||||
have : (fun x => Complex.log ((starRingEnd ℂ) (f x))) = (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f) := by
|
||||
rfl
|
||||
rw [this]
|
||||
have : ∀ z ∈ s, (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f) z = (Complex.conjCLE ∘ Complex.log ∘ f) z := by
|
||||
intro z hz
|
||||
unfold Function.comp
|
||||
rw [Complex.log_conj]
|
||||
rfl
|
||||
exact Complex.slitPlane_arg_ne_pi (h₃ z)
|
||||
rw [this]
|
||||
rw [← harmonic_iff_comp_CLE_is_harmonic]
|
||||
exact Complex.slitPlane_arg_ne_pi (h₃ z hz)
|
||||
rw [HarmonicOn_congr hs this]
|
||||
|
||||
rw [← harmonicOn_iff_comp_CLE_is_harmonicOn]
|
||||
|
||||
apply holomorphicOn_is_harmonicOn
|
||||
intro z
|
||||
apply DifferentiableAt.comp
|
||||
exact Complex.differentiableAt_log (h₃ z)
|
||||
exact h₁ z
|
||||
|
||||
repeat
|
||||
apply holomorphic_is_harmonic
|
||||
intro z
|
||||
apply DifferentiableAt.comp
|
||||
exact Complex.differentiableAt_log (h₃ z)
|
||||
exact h₁ z
|
||||
|
||||
|
||||
theorem log_normSq_of_holomorphic_is_harmonic
|
||||
|
|
|
@ -53,35 +53,45 @@ theorem laplace_add {f₁ f₂ : ℂ → F} (h₁ : ContDiff ℝ 2 f₁) (h₂ :
|
|||
exact h₂.differentiable one_le_two
|
||||
|
||||
|
||||
theorem laplace_add_ContDiffOn {f₁ f₂ : ℂ → F} {s : Set ℂ} (hs : IsOpen s) (h₁ : ContDiffOn ℝ 2 f₁ s) (h₂ : ContDiffOn ℝ 2 f₂ s): ∀ x ∈ s, Complex.laplace (f₁ + f₂) x = (Complex.laplace f₁) x + (Complex.laplace f₂) x := by
|
||||
theorem laplace_add_ContDiffOn
|
||||
{f₁ f₂ : ℂ → F}
|
||||
{s : Set ℂ}
|
||||
(hs : IsOpen s)
|
||||
(h₁ : ContDiffOn ℝ 2 f₁ s)
|
||||
(h₂ : ContDiffOn ℝ 2 f₂ s) :
|
||||
∀ x ∈ s, Complex.laplace (f₁ + f₂) x = (Complex.laplace f₁) x + (Complex.laplace f₂) x := by
|
||||
|
||||
unfold Complex.laplace
|
||||
simp
|
||||
intro x hx
|
||||
|
||||
have : partialDeriv ℝ 1 (f₁ + f₂) =ᶠ[nhds x] (partialDeriv ℝ 1 f₁) + (partialDeriv ℝ 1 f₂) := by
|
||||
sorry
|
||||
rw [partialDeriv_eventuallyEq ℝ this]
|
||||
|
||||
have t₁ : DifferentiableAt ℝ (partialDeriv ℝ 1 f₁) x := by
|
||||
sorry
|
||||
have t₂ : DifferentiableAt ℝ (partialDeriv ℝ 1 f₂) x := by
|
||||
sorry
|
||||
rw [partialDeriv_add₂_differentiableAt ℝ t₁ t₂]
|
||||
|
||||
rw [partialDeriv_add₂]
|
||||
have : partialDeriv ℝ Complex.I (f₁ + f₂) =ᶠ[nhds x] (partialDeriv ℝ Complex.I f₁) + (partialDeriv ℝ Complex.I f₂) := by
|
||||
sorry
|
||||
rw [partialDeriv_eventuallyEq ℝ this]
|
||||
have t₃ : DifferentiableAt ℝ (partialDeriv ℝ Complex.I f₁) x := by
|
||||
sorry
|
||||
have t₄ : DifferentiableAt ℝ (partialDeriv ℝ Complex.I f₂) x := by
|
||||
sorry
|
||||
rw [partialDeriv_add₂_differentiableAt ℝ t₃ t₄]
|
||||
|
||||
rw [partialDeriv_add₂]
|
||||
rw [partialDeriv_add₂]
|
||||
rw [partialDeriv_add₂]
|
||||
exact
|
||||
add_add_add_comm (partialDeriv ℝ 1 (partialDeriv ℝ 1 f₁))
|
||||
(partialDeriv ℝ 1 (partialDeriv ℝ 1 f₂))
|
||||
(partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₁))
|
||||
(partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₂))
|
||||
|
||||
exact (partialDeriv_contDiff ℝ h₁ Complex.I).differentiable le_rfl
|
||||
exact (partialDeriv_contDiff ℝ h₂ Complex.I).differentiable le_rfl
|
||||
exact h₁.differentiable one_le_two
|
||||
exact h₂.differentiable one_le_two
|
||||
exact (partialDeriv_contDiff ℝ h₁ 1).differentiable le_rfl
|
||||
exact (partialDeriv_contDiff ℝ h₂ 1).differentiable le_rfl
|
||||
exact h₁.differentiable one_le_two
|
||||
exact h₂.differentiable one_le_two
|
||||
-- I am super confused at this point because the tactic 'ring' does not work.
|
||||
-- I do not understand why. So, I need to do things by hand.
|
||||
rw [add_assoc]
|
||||
rw [add_assoc]
|
||||
rw [add_right_inj (partialDeriv ℝ 1 (partialDeriv ℝ 1 f₁) x)]
|
||||
rw [add_comm]
|
||||
rw [add_assoc]
|
||||
rw [add_right_inj (partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₁) x)]
|
||||
rw [add_comm]
|
||||
|
||||
|
||||
theorem laplace_smul {f : ℂ → F} (h : ContDiff ℝ 2 f) : ∀ v : ℝ, Complex.laplace (v • f) = v • (Complex.laplace f) := by
|
||||
|
@ -119,7 +129,7 @@ theorem laplace_compContLinAt {f : ℂ → F} {l : F →L[ℝ] G} {x : ℂ} (h :
|
|||
|
||||
have A₂ : ∃ v ∈ nhds x, (IsOpen v) ∧ (x ∈ v) ∧ (ContDiffOn ℝ 2 f v) := by
|
||||
have : ∃ u ∈ nhds x, ContDiffOn ℝ 2 f u := by
|
||||
apply ContDiffAt.contDiffOn h
|
||||
apply ContDiffAt.contDiffOn h
|
||||
rfl
|
||||
obtain ⟨u, hu₁, hu₂⟩ := this
|
||||
obtain ⟨v, hv₁, hv₂, hv₃⟩ := mem_nhds_iff.1 hu₁
|
||||
|
@ -130,7 +140,7 @@ theorem laplace_compContLinAt {f : ℂ → F} {l : F →L[ℝ] G} {x : ℂ} (h :
|
|||
exact hv₂
|
||||
constructor
|
||||
· exact hv₃
|
||||
· exact ContDiffOn.congr_mono hu₂ (fun x => congrFun rfl) hv₁
|
||||
· exact ContDiffOn.congr_mono hu₂ (fun x => congrFun rfl) hv₁
|
||||
obtain ⟨v, hv₁, hv₂, hv₃, hv₄⟩ := A₂
|
||||
|
||||
have D : ∀ w : ℂ, partialDeriv ℝ w (l ∘ f) =ᶠ[nhds x] l ∘ partialDeriv ℝ w (f) := by
|
||||
|
|
|
@ -54,6 +54,22 @@ theorem partialDeriv_add₂ {f₁ f₂ : E → F} {v : E} (h₁ : Differentiable
|
|||
rw [fderiv_add (h₁ w) (h₂ w)]
|
||||
|
||||
|
||||
theorem partialDeriv_add₂_differentiableAt
|
||||
{f₁ f₂ : E → F}
|
||||
{v : E}
|
||||
{x : E}
|
||||
(h₁ : DifferentiableAt 𝕜 f₁ x)
|
||||
(h₂ : DifferentiableAt 𝕜 f₂ x)
|
||||
:
|
||||
partialDeriv 𝕜 v (f₁ + f₂) x = (partialDeriv 𝕜 v f₁) x + (partialDeriv 𝕜 v f₂) x := by
|
||||
|
||||
unfold partialDeriv
|
||||
have : f₁ + f₂ = fun y ↦ f₁ y + f₂ y := by rfl
|
||||
rw [this]
|
||||
rw [fderiv_add h₁ h₂]
|
||||
rfl
|
||||
|
||||
|
||||
theorem partialDeriv_compContLin {f : E → F} {l : F →L[𝕜] G} {v : E} (h : Differentiable 𝕜 f) : partialDeriv 𝕜 v (l ∘ f) = l ∘ partialDeriv 𝕜 v f := by
|
||||
unfold partialDeriv
|
||||
|
||||
|
@ -95,7 +111,7 @@ theorem partialDeriv_contDiffAt {n : ℕ} {f : E → F} {x : E} (h : ContDiffAt
|
|||
unfold partialDeriv
|
||||
intro v
|
||||
|
||||
let eval_at_v : (E →L[𝕜] F) →L[𝕜] F :=
|
||||
let eval_at_v : (E →L[𝕜] F) →L[𝕜] F :=
|
||||
{
|
||||
toFun := fun l ↦ l v
|
||||
map_add' := by simp
|
||||
|
@ -132,7 +148,7 @@ theorem partialDeriv_eventuallyEq' {f₁ f₂ : E → F} {x : E} (h : f₁ =ᶠ[
|
|||
unfold partialDeriv
|
||||
intro v
|
||||
let A : fderiv 𝕜 f₁ =ᶠ[nhds x] fderiv 𝕜 f₂ := Filter.EventuallyEq.fderiv h
|
||||
apply Filter.EventuallyEq.comp₂
|
||||
apply Filter.EventuallyEq.comp₂
|
||||
exact A
|
||||
simp
|
||||
|
||||
|
|
Loading…
Reference in New Issue