486 lines
16 KiB
Plaintext
486 lines
16 KiB
Plaintext
import Mathlib.Analysis.Complex.Basic
|
||
import Mathlib.Analysis.Complex.TaylorSeries
|
||
import Mathlib.Analysis.Calculus.LineDeriv.Basic
|
||
import Mathlib.Analysis.Calculus.ContDiff.Defs
|
||
import Mathlib.Analysis.Calculus.FDeriv.Basic
|
||
import Mathlib.Analysis.Calculus.FDeriv.Symmetric
|
||
import Mathlib.Analysis.SpecialFunctions.Complex.LogDeriv
|
||
import Mathlib.Data.Complex.Module
|
||
import Mathlib.Data.Complex.Order
|
||
import Mathlib.Data.Complex.Exponential
|
||
import Mathlib.Data.Fin.Tuple.Basic
|
||
import Mathlib.Analysis.RCLike.Basic
|
||
import Mathlib.Topology.Algebra.InfiniteSum.Module
|
||
import Mathlib.Topology.Instances.RealVectorSpace
|
||
import Nevanlinna.cauchyRiemann
|
||
import Nevanlinna.laplace
|
||
import Nevanlinna.partialDeriv
|
||
|
||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
||
variable {F₁ : Type*} [NormedAddCommGroup F₁] [NormedSpace ℂ F₁] [CompleteSpace F₁]
|
||
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace ℝ G]
|
||
variable {G₁ : Type*} [NormedAddCommGroup G₁] [NormedSpace ℂ G₁] [CompleteSpace G₁]
|
||
|
||
|
||
def Harmonic (f : ℂ → F) : Prop :=
|
||
(ContDiff ℝ 2 f) ∧ (∀ z, Complex.laplace f z = 0)
|
||
|
||
|
||
def HarmonicOn (f : ℂ → F) (s : Set ℂ) : Prop :=
|
||
(ContDiffOn ℝ 2 f s) ∧ (∀ z ∈ s, Complex.laplace f z = 0)
|
||
|
||
|
||
theorem HarmonicOn_of_locally_HarmonicOn {f : ℂ → F} {s : Set ℂ} (h : ∀ x ∈ s, ∃ (u : Set ℂ), IsOpen u ∧ x ∈ u ∧ HarmonicOn f (s ∩ u)) :
|
||
HarmonicOn f s := by
|
||
constructor
|
||
· apply contDiffOn_of_locally_contDiffOn
|
||
intro x xHyp
|
||
obtain ⟨u, uHyp⟩ := h x xHyp
|
||
use u
|
||
exact ⟨ uHyp.1, ⟨uHyp.2.1, uHyp.2.2.1⟩⟩
|
||
· intro x xHyp
|
||
obtain ⟨u, uHyp⟩ := h x xHyp
|
||
exact (uHyp.2.2.2) x ⟨xHyp, uHyp.2.1⟩
|
||
|
||
|
||
theorem HarmonicOn_congr {f₁ f₂ : ℂ → F} {s : Set ℂ} (hs : IsOpen s) (hf₁₂ : ∀ x ∈ s, f₁ x = f₂ x) :
|
||
HarmonicOn f₁ s ↔ HarmonicOn f₂ s := by
|
||
constructor
|
||
· intro h₁
|
||
constructor
|
||
· apply ContDiffOn.congr h₁.1
|
||
intro x hx
|
||
rw [eq_comm]
|
||
exact hf₁₂ x hx
|
||
· intro z hz
|
||
have : f₁ =ᶠ[nhds z] f₂ := by
|
||
unfold Filter.EventuallyEq
|
||
unfold Filter.Eventually
|
||
simp
|
||
refine mem_nhds_iff.mpr ?_
|
||
use s
|
||
constructor
|
||
· exact hf₁₂
|
||
· constructor
|
||
· exact hs
|
||
· exact hz
|
||
rw [← laplace_eventuallyEq this]
|
||
exact h₁.2 z hz
|
||
· intro h₁
|
||
constructor
|
||
· apply ContDiffOn.congr h₁.1
|
||
intro x hx
|
||
exact hf₁₂ x hx
|
||
· intro z hz
|
||
have : f₁ =ᶠ[nhds z] f₂ := by
|
||
unfold Filter.EventuallyEq
|
||
unfold Filter.Eventually
|
||
simp
|
||
refine mem_nhds_iff.mpr ?_
|
||
use s
|
||
constructor
|
||
· exact hf₁₂
|
||
· constructor
|
||
· exact hs
|
||
· exact hz
|
||
rw [laplace_eventuallyEq this]
|
||
exact h₁.2 z hz
|
||
|
||
|
||
theorem harmonic_add_harmonic_is_harmonic {f₁ f₂ : ℂ → F} (h₁ : Harmonic f₁) (h₂ : Harmonic f₂) :
|
||
Harmonic (f₁ + f₂) := by
|
||
constructor
|
||
· exact ContDiff.add h₁.1 h₂.1
|
||
· rw [laplace_add h₁.1 h₂.1]
|
||
simp
|
||
intro z
|
||
rw [h₁.2 z, h₂.2 z]
|
||
simp
|
||
|
||
|
||
theorem harmonicOn_add_harmonicOn_is_harmonicOn {f₁ f₂ : ℂ → F} {s : Set ℂ} (hs : IsOpen s) (h₁ : HarmonicOn f₁ s) (h₂ : HarmonicOn f₂ s) :
|
||
HarmonicOn (f₁ + f₂) s := by
|
||
constructor
|
||
· exact ContDiffOn.add h₁.1 h₂.1
|
||
· intro z hz
|
||
rw [laplace_add_ContDiffOn hs h₁.1 h₂.1 z hz]
|
||
rw [h₁.2 z hz, h₂.2 z hz]
|
||
simp
|
||
|
||
|
||
theorem harmonic_smul_const_is_harmonic {f : ℂ → F} {c : ℝ} (h : Harmonic f) :
|
||
Harmonic (c • f) := by
|
||
constructor
|
||
· exact ContDiff.const_smul c h.1
|
||
· rw [laplace_smul h.1]
|
||
dsimp
|
||
intro z
|
||
rw [h.2 z]
|
||
simp
|
||
|
||
|
||
theorem harmonic_iff_smul_const_is_harmonic {f : ℂ → F} {c : ℝ} (hc : c ≠ 0) :
|
||
Harmonic f ↔ Harmonic (c • f) := by
|
||
constructor
|
||
· exact harmonic_smul_const_is_harmonic
|
||
· nth_rewrite 2 [((eq_inv_smul_iff₀ hc).mpr rfl : f = c⁻¹ • c • f)]
|
||
exact fun a => harmonic_smul_const_is_harmonic a
|
||
|
||
|
||
theorem harmonic_comp_CLM_is_harmonic {f : ℂ → F₁} {l : F₁ →L[ℝ] G} (h : Harmonic f) :
|
||
Harmonic (l ∘ f) := by
|
||
|
||
constructor
|
||
· -- Continuous differentiability
|
||
apply ContDiff.comp
|
||
exact ContinuousLinearMap.contDiff l
|
||
exact h.1
|
||
· rw [laplace_compContLin]
|
||
simp
|
||
intro z
|
||
rw [h.2 z]
|
||
simp
|
||
exact ContDiff.restrict_scalars ℝ h.1
|
||
|
||
|
||
theorem harmonicOn_comp_CLM_is_harmonicOn {f : ℂ → F₁} {s : Set ℂ} {l : F₁ →L[ℝ] G} (hs : IsOpen s) (h : HarmonicOn f s) :
|
||
HarmonicOn (l ∘ f) s := by
|
||
|
||
constructor
|
||
· -- Continuous differentiability
|
||
apply ContDiffOn.continuousLinearMap_comp
|
||
exact h.1
|
||
· -- Vanishing of Laplace
|
||
intro z zHyp
|
||
rw [laplace_compContLinAt]
|
||
simp
|
||
rw [h.2 z]
|
||
simp
|
||
assumption
|
||
apply ContDiffOn.contDiffAt h.1
|
||
exact IsOpen.mem_nhds hs zHyp
|
||
|
||
|
||
theorem harmonic_iff_comp_CLE_is_harmonic {f : ℂ → F₁} {l : F₁ ≃L[ℝ] G₁} :
|
||
Harmonic f ↔ Harmonic (l ∘ f) := by
|
||
|
||
constructor
|
||
· have : l ∘ f = (l : F₁ →L[ℝ] G₁) ∘ f := by rfl
|
||
rw [this]
|
||
exact harmonic_comp_CLM_is_harmonic
|
||
· have : f = (l.symm : G₁ →L[ℝ] F₁) ∘ l ∘ f := by
|
||
funext z
|
||
unfold Function.comp
|
||
simp
|
||
nth_rewrite 2 [this]
|
||
exact harmonic_comp_CLM_is_harmonic
|
||
|
||
|
||
theorem harmonicOn_iff_comp_CLE_is_harmonicOn {f : ℂ → F₁} {s : Set ℂ} {l : F₁ ≃L[ℝ] G₁} (hs : IsOpen s) :
|
||
HarmonicOn f s ↔ HarmonicOn (l ∘ f) s := by
|
||
|
||
constructor
|
||
· have : l ∘ f = (l : F₁ →L[ℝ] G₁) ∘ f := by rfl
|
||
rw [this]
|
||
exact harmonicOn_comp_CLM_is_harmonicOn hs
|
||
· have : f = (l.symm : G₁ →L[ℝ] F₁) ∘ l ∘ f := by
|
||
funext z
|
||
unfold Function.comp
|
||
simp
|
||
nth_rewrite 2 [this]
|
||
exact harmonicOn_comp_CLM_is_harmonicOn hs
|
||
|
||
|
||
theorem holomorphic_is_harmonic {f : ℂ → F₁} (h : Differentiable ℂ f) :
|
||
Harmonic f := by
|
||
|
||
-- f is real C²
|
||
have f_is_real_C2 : ContDiff ℝ 2 f :=
|
||
ContDiff.restrict_scalars ℝ (Differentiable.contDiff h)
|
||
|
||
have fI_is_real_differentiable : Differentiable ℝ (partialDeriv ℝ 1 f) := by
|
||
exact (partialDeriv_contDiff ℝ f_is_real_C2 1).differentiable (Submonoid.oneLE.proof_2 ℕ∞)
|
||
|
||
constructor
|
||
· -- f is two times real continuously differentiable
|
||
exact f_is_real_C2
|
||
|
||
· -- Laplace of f is zero
|
||
unfold Complex.laplace
|
||
rw [CauchyRiemann₄ h]
|
||
|
||
-- This lemma says that partial derivatives commute with complex scalar
|
||
-- multiplication. This is a consequence of partialDeriv_compContLin once we
|
||
-- note that complex scalar multiplication is continuous ℝ-linear.
|
||
have : ∀ v, ∀ s : ℂ, ∀ g : ℂ → F₁, Differentiable ℝ g → partialDeriv ℝ v (s • g) = s • (partialDeriv ℝ v g) := by
|
||
intro v s g hg
|
||
|
||
-- Present scalar multiplication as a continuous ℝ-linear map. This is
|
||
-- horrible, there must be better ways to do that.
|
||
let sMuls : F₁ →L[ℝ] F₁ :=
|
||
{
|
||
toFun := fun x ↦ s • x
|
||
map_add' := by exact fun x y => DistribSMul.smul_add s x y
|
||
map_smul' := by exact fun m x => (smul_comm ((RingHom.id ℝ) m) s x).symm
|
||
cont := continuous_const_smul s
|
||
}
|
||
|
||
-- Bring the goal into a form that is recognized by
|
||
-- partialDeriv_compContLin.
|
||
have : s • g = sMuls ∘ g := by rfl
|
||
rw [this]
|
||
|
||
rw [partialDeriv_compContLin ℝ hg]
|
||
rfl
|
||
|
||
rw [this]
|
||
rw [partialDeriv_comm f_is_real_C2 Complex.I 1]
|
||
rw [CauchyRiemann₄ h]
|
||
rw [this]
|
||
rw [← smul_assoc]
|
||
simp
|
||
|
||
-- Subgoals coming from the application of 'this'
|
||
-- Differentiable ℝ (Real.partialDeriv 1 f)
|
||
exact fI_is_real_differentiable
|
||
-- Differentiable ℝ (Real.partialDeriv 1 f)
|
||
exact fI_is_real_differentiable
|
||
|
||
|
||
theorem holomorphicOn_is_harmonicOn {f : ℂ → F₁} {s : Set ℂ} (hs : IsOpen s) (h : DifferentiableOn ℂ f s) :
|
||
HarmonicOn f s := by
|
||
|
||
-- f is real C²
|
||
have f_is_real_C2 : ContDiffOn ℝ 2 f s :=
|
||
ContDiffOn.restrict_scalars ℝ (DifferentiableOn.contDiffOn h hs)
|
||
|
||
have fI_is_real_differentiable : DifferentiableOn ℝ (partialDeriv ℝ 1 f) s := by
|
||
intro z hz
|
||
apply DifferentiableAt.differentiableWithinAt
|
||
let ZZ := (f_is_real_C2 z hz).contDiffAt (IsOpen.mem_nhds hs hz)
|
||
let AA := partialDeriv_contDiffAt ℝ ZZ 1
|
||
exact AA.differentiableAt (by rfl)
|
||
|
||
constructor
|
||
· -- f is two times real continuously differentiable
|
||
exact f_is_real_C2
|
||
|
||
· -- Laplace of f is zero
|
||
unfold Complex.laplace
|
||
intro z hz
|
||
simp
|
||
have : DifferentiableAt ℂ f z := by
|
||
sorry
|
||
let ZZ := h z hz
|
||
rw [CauchyRiemann₅ this]
|
||
|
||
-- This lemma says that partial derivatives commute with complex scalar
|
||
-- multiplication. This is a consequence of partialDeriv_compContLin once we
|
||
-- note that complex scalar multiplication is continuous ℝ-linear.
|
||
have : ∀ v, ∀ s : ℂ, ∀ g : ℂ → F₁, Differentiable ℝ g → partialDeriv ℝ v (s • g) = s • (partialDeriv ℝ v g) := by
|
||
intro v s g hg
|
||
|
||
-- Present scalar multiplication as a continuous ℝ-linear map. This is
|
||
-- horrible, there must be better ways to do that.
|
||
let sMuls : F₁ →L[ℝ] F₁ :=
|
||
{
|
||
toFun := fun x ↦ s • x
|
||
map_add' := by exact fun x y => DistribSMul.smul_add s x y
|
||
map_smul' := by exact fun m x => (smul_comm ((RingHom.id ℝ) m) s x).symm
|
||
cont := continuous_const_smul s
|
||
}
|
||
|
||
-- Bring the goal into a form that is recognized by
|
||
-- partialDeriv_compContLin.
|
||
have : s • g = sMuls ∘ g := by rfl
|
||
rw [this]
|
||
|
||
rw [partialDeriv_compContLin ℝ hg]
|
||
rfl
|
||
|
||
rw [this]
|
||
rw [partialDeriv_comm f_is_real_C2 Complex.I 1]
|
||
rw [CauchyRiemann₄ h]
|
||
rw [this]
|
||
rw [← smul_assoc]
|
||
simp
|
||
|
||
-- Subgoals coming from the application of 'this'
|
||
-- Differentiable ℝ (Real.partialDeriv 1 f)
|
||
exact fI_is_real_differentiable
|
||
-- Differentiable ℝ (Real.partialDeriv 1 f)
|
||
exact fI_is_real_differentiable
|
||
|
||
|
||
theorem re_of_holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
||
Harmonic (Complex.reCLM ∘ f) := by
|
||
apply harmonic_comp_CLM_is_harmonic
|
||
exact holomorphic_is_harmonic h
|
||
|
||
|
||
theorem im_of_holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
||
Harmonic (Complex.imCLM ∘ f) := by
|
||
apply harmonic_comp_CLM_is_harmonic
|
||
exact holomorphic_is_harmonic h
|
||
|
||
|
||
theorem antiholomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
||
Harmonic (Complex.conjCLE ∘ f) := by
|
||
apply harmonic_iff_comp_CLE_is_harmonic.1
|
||
exact holomorphic_is_harmonic h
|
||
|
||
|
||
theorem log_normSq_of_holomorphicOn_is_harmonicOn
|
||
{f : ℂ → ℂ}
|
||
{s : Set ℂ}
|
||
(hs : IsOpen s)
|
||
(h₁ : DifferentiableOn ℂ f s)
|
||
(h₂ : ∀ z ∈ s, f z ≠ 0)
|
||
(h₃ : ∀ z ∈ s, f z ∈ Complex.slitPlane) :
|
||
HarmonicOn (Real.log ∘ Complex.normSq ∘ f) s := by
|
||
|
||
suffices hyp : HarmonicOn (⇑Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f) s from
|
||
(harmonicOn_comp_CLM_is_harmonicOn hs hyp : HarmonicOn (Complex.reCLM ∘ Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f) s)
|
||
|
||
suffices hyp : HarmonicOn (Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f)) s from by
|
||
have : Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f = Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f) := by
|
||
funext z
|
||
simp
|
||
rw [Complex.ofReal_log (Complex.normSq_nonneg (f z))]
|
||
rw [Complex.normSq_eq_conj_mul_self]
|
||
rw [this]
|
||
exact hyp
|
||
|
||
|
||
-- Suffices to show Harmonic (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f + Complex.log ∘ f)
|
||
-- THIS IS WHERE WE USE h₃
|
||
have : ∀ z ∈ s, (Complex.log ∘ (⇑(starRingEnd ℂ) ∘ f * f)) z = (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f + Complex.log ∘ f) z := by
|
||
intro z hz
|
||
unfold Function.comp
|
||
simp
|
||
rw [Complex.log_mul_eq_add_log_iff]
|
||
|
||
have : Complex.arg ((starRingEnd ℂ) (f z)) = - Complex.arg (f z) := by
|
||
rw [Complex.arg_conj]
|
||
have : ¬ Complex.arg (f z) = Real.pi := by
|
||
exact Complex.slitPlane_arg_ne_pi (h₃ z hz)
|
||
simp
|
||
tauto
|
||
rw [this]
|
||
simp
|
||
constructor
|
||
· exact Real.pi_pos
|
||
· exact Real.pi_nonneg
|
||
exact (AddEquivClass.map_ne_zero_iff starRingAut).mpr (h₂ z hz)
|
||
exact h₂ z hz
|
||
|
||
rw [HarmonicOn_congr hs this]
|
||
simp
|
||
|
||
apply harmonicOn_add_harmonicOn_is_harmonicOn
|
||
exact hs
|
||
have : (fun x => Complex.log ((starRingEnd ℂ) (f x))) = (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f) := by
|
||
rfl
|
||
rw [this]
|
||
have : ∀ z ∈ s, (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f) z = (Complex.conjCLE ∘ Complex.log ∘ f) z := by
|
||
intro z hz
|
||
unfold Function.comp
|
||
rw [Complex.log_conj]
|
||
rfl
|
||
exact Complex.slitPlane_arg_ne_pi (h₃ z hz)
|
||
rw [HarmonicOn_congr hs this]
|
||
|
||
rw [← harmonicOn_iff_comp_CLE_is_harmonicOn]
|
||
|
||
apply holomorphicOn_is_harmonicOn
|
||
intro z
|
||
apply DifferentiableAt.comp
|
||
exact Complex.differentiableAt_log (h₃ z)
|
||
exact h₁ z
|
||
|
||
|
||
|
||
theorem log_normSq_of_holomorphic_is_harmonic
|
||
{f : ℂ → ℂ}
|
||
(h₁ : Differentiable ℂ f)
|
||
(h₂ : ∀ z, f z ≠ 0)
|
||
(h₃ : ∀ z, f z ∈ Complex.slitPlane) :
|
||
Harmonic (Real.log ∘ Complex.normSq ∘ f) := by
|
||
|
||
suffices hyp : Harmonic (⇑Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f) from
|
||
(harmonic_comp_CLM_is_harmonic hyp : Harmonic (Complex.reCLM ∘ Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f))
|
||
|
||
suffices hyp : Harmonic (Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f)) from by
|
||
have : Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f = Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f) := by
|
||
funext z
|
||
simp
|
||
rw [Complex.ofReal_log (Complex.normSq_nonneg (f z))]
|
||
rw [Complex.normSq_eq_conj_mul_self]
|
||
rw [this]
|
||
exact hyp
|
||
|
||
|
||
-- Suffices to show Harmonic (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f + Complex.log ∘ f)
|
||
-- THIS IS WHERE WE USE h₃
|
||
have : Complex.log ∘ (⇑(starRingEnd ℂ) ∘ f * f) = Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f + Complex.log ∘ f := by
|
||
unfold Function.comp
|
||
funext z
|
||
simp
|
||
rw [Complex.log_mul_eq_add_log_iff]
|
||
|
||
have : Complex.arg ((starRingEnd ℂ) (f z)) = - Complex.arg (f z) := by
|
||
rw [Complex.arg_conj]
|
||
have : ¬ Complex.arg (f z) = Real.pi := by
|
||
exact Complex.slitPlane_arg_ne_pi (h₃ z)
|
||
simp
|
||
tauto
|
||
rw [this]
|
||
simp
|
||
constructor
|
||
· exact Real.pi_pos
|
||
· exact Real.pi_nonneg
|
||
exact (AddEquivClass.map_ne_zero_iff starRingAut).mpr (h₂ z)
|
||
exact h₂ z
|
||
rw [this]
|
||
|
||
apply harmonic_add_harmonic_is_harmonic
|
||
have : Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f = Complex.conjCLE ∘ Complex.log ∘ f := by
|
||
funext z
|
||
unfold Function.comp
|
||
rw [Complex.log_conj]
|
||
rfl
|
||
exact Complex.slitPlane_arg_ne_pi (h₃ z)
|
||
rw [this]
|
||
rw [← harmonic_iff_comp_CLE_is_harmonic]
|
||
|
||
repeat
|
||
apply holomorphic_is_harmonic
|
||
intro z
|
||
apply DifferentiableAt.comp
|
||
exact Complex.differentiableAt_log (h₃ z)
|
||
exact h₁ z
|
||
|
||
|
||
theorem logabs_of_holomorphic_is_harmonic
|
||
{f : ℂ → ℂ}
|
||
(h₁ : Differentiable ℂ f)
|
||
(h₂ : ∀ z, f z ≠ 0)
|
||
(h₃ : ∀ z, f z ∈ Complex.slitPlane) :
|
||
Harmonic (fun z ↦ Real.log ‖f z‖) := by
|
||
|
||
-- Suffices: Harmonic (2⁻¹ • Real.log ∘ ⇑Complex.normSq ∘ f)
|
||
have : (fun z ↦ Real.log ‖f z‖) = (2 : ℝ)⁻¹ • (Real.log ∘ Complex.normSq ∘ f) := by
|
||
funext z
|
||
simp
|
||
unfold Complex.abs
|
||
simp
|
||
rw [Real.log_sqrt]
|
||
rw [div_eq_inv_mul (Real.log (Complex.normSq (f z))) 2]
|
||
exact Complex.normSq_nonneg (f z)
|
||
rw [this]
|
||
|
||
-- Suffices: Harmonic (Real.log ∘ ⇑Complex.normSq ∘ f)
|
||
apply (harmonic_iff_smul_const_is_harmonic (inv_ne_zero two_ne_zero)).1
|
||
|
||
exact log_normSq_of_holomorphic_is_harmonic h₁ h₂ h₃
|