working
This commit is contained in:
parent
c8e1aacb15
commit
a7b0790675
@ -53,35 +53,45 @@ theorem laplace_add {f₁ f₂ : ℂ → F} (h₁ : ContDiff ℝ 2 f₁) (h₂ :
|
||||
exact h₂.differentiable one_le_two
|
||||
|
||||
|
||||
theorem laplace_add_ContDiffOn {f₁ f₂ : ℂ → F} {s : Set ℂ} (hs : IsOpen s) (h₁ : ContDiffOn ℝ 2 f₁ s) (h₂ : ContDiffOn ℝ 2 f₂ s): ∀ x ∈ s, Complex.laplace (f₁ + f₂) x = (Complex.laplace f₁) x + (Complex.laplace f₂) x := by
|
||||
theorem laplace_add_ContDiffOn
|
||||
{f₁ f₂ : ℂ → F}
|
||||
{s : Set ℂ}
|
||||
(hs : IsOpen s)
|
||||
(h₁ : ContDiffOn ℝ 2 f₁ s)
|
||||
(h₂ : ContDiffOn ℝ 2 f₂ s) :
|
||||
∀ x ∈ s, Complex.laplace (f₁ + f₂) x = (Complex.laplace f₁) x + (Complex.laplace f₂) x := by
|
||||
|
||||
unfold Complex.laplace
|
||||
simp
|
||||
intro x hx
|
||||
|
||||
have : partialDeriv ℝ 1 (f₁ + f₂) =ᶠ[nhds x] (partialDeriv ℝ 1 f₁) + (partialDeriv ℝ 1 f₂) := by
|
||||
sorry
|
||||
rw [partialDeriv_eventuallyEq ℝ this]
|
||||
|
||||
have t₁ : DifferentiableAt ℝ (partialDeriv ℝ 1 f₁) x := by
|
||||
sorry
|
||||
have t₂ : DifferentiableAt ℝ (partialDeriv ℝ 1 f₂) x := by
|
||||
sorry
|
||||
rw [partialDeriv_add₂_differentiableAt ℝ t₁ t₂]
|
||||
|
||||
rw [partialDeriv_add₂]
|
||||
have : partialDeriv ℝ Complex.I (f₁ + f₂) =ᶠ[nhds x] (partialDeriv ℝ Complex.I f₁) + (partialDeriv ℝ Complex.I f₂) := by
|
||||
sorry
|
||||
rw [partialDeriv_eventuallyEq ℝ this]
|
||||
have t₃ : DifferentiableAt ℝ (partialDeriv ℝ Complex.I f₁) x := by
|
||||
sorry
|
||||
have t₄ : DifferentiableAt ℝ (partialDeriv ℝ Complex.I f₂) x := by
|
||||
sorry
|
||||
rw [partialDeriv_add₂_differentiableAt ℝ t₃ t₄]
|
||||
|
||||
rw [partialDeriv_add₂]
|
||||
rw [partialDeriv_add₂]
|
||||
rw [partialDeriv_add₂]
|
||||
exact
|
||||
add_add_add_comm (partialDeriv ℝ 1 (partialDeriv ℝ 1 f₁))
|
||||
(partialDeriv ℝ 1 (partialDeriv ℝ 1 f₂))
|
||||
(partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₁))
|
||||
(partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₂))
|
||||
|
||||
exact (partialDeriv_contDiff ℝ h₁ Complex.I).differentiable le_rfl
|
||||
exact (partialDeriv_contDiff ℝ h₂ Complex.I).differentiable le_rfl
|
||||
exact h₁.differentiable one_le_two
|
||||
exact h₂.differentiable one_le_two
|
||||
exact (partialDeriv_contDiff ℝ h₁ 1).differentiable le_rfl
|
||||
exact (partialDeriv_contDiff ℝ h₂ 1).differentiable le_rfl
|
||||
exact h₁.differentiable one_le_two
|
||||
exact h₂.differentiable one_le_two
|
||||
-- I am super confused at this point because the tactic 'ring' does not work.
|
||||
-- I do not understand why.
|
||||
rw [add_assoc]
|
||||
rw [add_assoc]
|
||||
rw [add_right_inj (partialDeriv ℝ 1 (partialDeriv ℝ 1 f₁) x)]
|
||||
rw [add_comm]
|
||||
rw [add_assoc]
|
||||
rw [add_right_inj (partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₁) x)]
|
||||
rw [add_comm]
|
||||
|
||||
|
||||
theorem laplace_smul {f : ℂ → F} (h : ContDiff ℝ 2 f) : ∀ v : ℝ, Complex.laplace (v • f) = v • (Complex.laplace f) := by
|
||||
@ -119,7 +129,7 @@ theorem laplace_compContLinAt {f : ℂ → F} {l : F →L[ℝ] G} {x : ℂ} (h :
|
||||
|
||||
have A₂ : ∃ v ∈ nhds x, (IsOpen v) ∧ (x ∈ v) ∧ (ContDiffOn ℝ 2 f v) := by
|
||||
have : ∃ u ∈ nhds x, ContDiffOn ℝ 2 f u := by
|
||||
apply ContDiffAt.contDiffOn h
|
||||
apply ContDiffAt.contDiffOn h
|
||||
rfl
|
||||
obtain ⟨u, hu₁, hu₂⟩ := this
|
||||
obtain ⟨v, hv₁, hv₂, hv₃⟩ := mem_nhds_iff.1 hu₁
|
||||
@ -130,7 +140,7 @@ theorem laplace_compContLinAt {f : ℂ → F} {l : F →L[ℝ] G} {x : ℂ} (h :
|
||||
exact hv₂
|
||||
constructor
|
||||
· exact hv₃
|
||||
· exact ContDiffOn.congr_mono hu₂ (fun x => congrFun rfl) hv₁
|
||||
· exact ContDiffOn.congr_mono hu₂ (fun x => congrFun rfl) hv₁
|
||||
obtain ⟨v, hv₁, hv₂, hv₃, hv₄⟩ := A₂
|
||||
|
||||
have D : ∀ w : ℂ, partialDeriv ℝ w (l ∘ f) =ᶠ[nhds x] l ∘ partialDeriv ℝ w (f) := by
|
||||
|
@ -54,6 +54,22 @@ theorem partialDeriv_add₂ {f₁ f₂ : E → F} {v : E} (h₁ : Differentiable
|
||||
rw [fderiv_add (h₁ w) (h₂ w)]
|
||||
|
||||
|
||||
theorem partialDeriv_add₂_differentiableAt
|
||||
{f₁ f₂ : E → F}
|
||||
{v : E}
|
||||
{x : E}
|
||||
(h₁ : DifferentiableAt 𝕜 f₁ x)
|
||||
(h₂ : DifferentiableAt 𝕜 f₂ x)
|
||||
:
|
||||
partialDeriv 𝕜 v (f₁ + f₂) x = (partialDeriv 𝕜 v f₁) x + (partialDeriv 𝕜 v f₂) x := by
|
||||
|
||||
unfold partialDeriv
|
||||
have : f₁ + f₂ = fun y ↦ f₁ y + f₂ y := by rfl
|
||||
rw [this]
|
||||
rw [fderiv_add h₁ h₂]
|
||||
rfl
|
||||
|
||||
|
||||
theorem partialDeriv_compContLin {f : E → F} {l : F →L[𝕜] G} {v : E} (h : Differentiable 𝕜 f) : partialDeriv 𝕜 v (l ∘ f) = l ∘ partialDeriv 𝕜 v f := by
|
||||
unfold partialDeriv
|
||||
|
||||
@ -95,7 +111,7 @@ theorem partialDeriv_contDiffAt {n : ℕ} {f : E → F} {x : E} (h : ContDiffAt
|
||||
unfold partialDeriv
|
||||
intro v
|
||||
|
||||
let eval_at_v : (E →L[𝕜] F) →L[𝕜] F :=
|
||||
let eval_at_v : (E →L[𝕜] F) →L[𝕜] F :=
|
||||
{
|
||||
toFun := fun l ↦ l v
|
||||
map_add' := by simp
|
||||
@ -132,7 +148,7 @@ theorem partialDeriv_eventuallyEq' {f₁ f₂ : E → F} {x : E} (h : f₁ =ᶠ[
|
||||
unfold partialDeriv
|
||||
intro v
|
||||
let A : fderiv 𝕜 f₁ =ᶠ[nhds x] fderiv 𝕜 f₂ := Filter.EventuallyEq.fderiv h
|
||||
apply Filter.EventuallyEq.comp₂
|
||||
apply Filter.EventuallyEq.comp₂
|
||||
exact A
|
||||
simp
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user