Compare commits
2 Commits
bfeade4095
...
015ab14131
Author | SHA1 | Date |
---|---|---|
Stefan Kebekus | 015ab14131 | |
Stefan Kebekus | bb2732106c |
|
@ -126,6 +126,22 @@ theorem logabs_of_holomorphic_is_harmonic
|
||||||
have f_is_real_C2 : ContDiff ℝ 2 f :=
|
have f_is_real_C2 : ContDiff ℝ 2 f :=
|
||||||
ContDiff.restrict_scalars ℝ (Differentiable.contDiff h₁)
|
ContDiff.restrict_scalars ℝ (Differentiable.contDiff h₁)
|
||||||
|
|
||||||
|
-- Complex.log ∘ f is real C²
|
||||||
|
have t₀ : Differentiable ℂ (Complex.log ∘ f) := by
|
||||||
|
intro z
|
||||||
|
apply DifferentiableAt.comp
|
||||||
|
exact Complex.differentiableAt_log (h₃ z)
|
||||||
|
exact h₁ z
|
||||||
|
|
||||||
|
have t₂ : Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f = ⇑(starRingEnd ℂ) ∘ Complex.log ∘ f := by
|
||||||
|
funext z
|
||||||
|
unfold Function.comp
|
||||||
|
rw [Complex.log_conj]
|
||||||
|
exact Complex.slitPlane_arg_ne_pi (h₃ z)
|
||||||
|
|
||||||
|
have t₃ : ⇑(starRingEnd ℂ) ∘ Complex.log ∘ f = Complex.conjCLE ∘ Complex.log ∘ f := by
|
||||||
|
rfl
|
||||||
|
|
||||||
-- The norm square is z * z.conj
|
-- The norm square is z * z.conj
|
||||||
have normSq_conj : ∀ (z : ℂ), (starRingEnd ℂ) z * z = ↑‖z‖ ^ 2 := Complex.conj_mul'
|
have normSq_conj : ∀ (z : ℂ), (starRingEnd ℂ) z * z = ↑‖z‖ ^ 2 := Complex.conj_mul'
|
||||||
|
|
||||||
|
@ -145,6 +161,16 @@ theorem logabs_of_holomorphic_is_harmonic
|
||||||
apply ContinuousLinearMap.contDiff Complex.imCLM
|
apply ContinuousLinearMap.contDiff Complex.imCLM
|
||||||
apply ContinuousLinearMap.contDiff Complex.imCLM
|
apply ContinuousLinearMap.contDiff Complex.imCLM
|
||||||
|
|
||||||
|
have t₄ : ContDiff ℝ 2 (Real.log ∘ ⇑Complex.normSq ∘ f) := by
|
||||||
|
rw [contDiff_iff_contDiffAt]
|
||||||
|
intro z
|
||||||
|
apply ContDiffAt.comp
|
||||||
|
apply Real.contDiffAt_log.mpr
|
||||||
|
simp
|
||||||
|
exact h₂ z
|
||||||
|
apply ContDiff.comp_contDiffAt z normSq_is_real_C2
|
||||||
|
exact ContDiff.contDiffAt f_is_real_C2
|
||||||
|
|
||||||
constructor
|
constructor
|
||||||
· -- logabs f is real C²
|
· -- logabs f is real C²
|
||||||
have : (fun z ↦ Real.log ‖f z‖) = (2 : ℝ)⁻¹ • (Real.log ∘ Complex.normSq ∘ f) := by
|
have : (fun z ↦ Real.log ‖f z‖) = (2 : ℝ)⁻¹ • (Real.log ∘ Complex.normSq ∘ f) := by
|
||||||
|
@ -191,7 +217,8 @@ theorem logabs_of_holomorphic_is_harmonic
|
||||||
intro z
|
intro z
|
||||||
rw [laplace_compContLin]
|
rw [laplace_compContLin]
|
||||||
simp
|
simp
|
||||||
sorry
|
-- ContDiff ℝ 2 (Real.log ∘ ⇑Complex.normSq ∘ f)
|
||||||
|
exact t₄
|
||||||
conv =>
|
conv =>
|
||||||
intro z
|
intro z
|
||||||
rw [this z]
|
rw [this z]
|
||||||
|
@ -231,32 +258,31 @@ theorem logabs_of_holomorphic_is_harmonic
|
||||||
rw [this]
|
rw [this]
|
||||||
rw [laplace_add]
|
rw [laplace_add]
|
||||||
|
|
||||||
have : Differentiable ℂ (Complex.log ∘ f) := by
|
|
||||||
intro z
|
|
||||||
apply DifferentiableAt.comp
|
|
||||||
exact Complex.differentiableAt_log (h₃ z)
|
|
||||||
exact h₁ z
|
|
||||||
|
|
||||||
have t₁: Complex.laplace (Complex.log ∘ f) = 0 := by
|
have t₁: Complex.laplace (Complex.log ∘ f) = 0 := by
|
||||||
let A := holomorphic_is_harmonic this
|
let A := holomorphic_is_harmonic t₀
|
||||||
funext z
|
funext z
|
||||||
exact A.2 z
|
exact A.2 z
|
||||||
rw [t₁]
|
rw [t₁]
|
||||||
simp
|
simp
|
||||||
|
|
||||||
have : Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f = ⇑(starRingEnd ℂ) ∘ Complex.log ∘ f := by
|
rw [t₂]
|
||||||
funext z
|
|
||||||
unfold Function.comp
|
|
||||||
rw [Complex.log_conj]
|
|
||||||
exact Complex.slitPlane_arg_ne_pi (h₃ z)
|
|
||||||
rw [this]
|
|
||||||
|
|
||||||
have : ⇑(starRingEnd ℂ) ∘ Complex.log ∘ f = Complex.conjCLE ∘ Complex.log ∘ f := by
|
rw [t₃]
|
||||||
rfl
|
|
||||||
rw [this]
|
|
||||||
rw [laplace_compCLE]
|
rw [laplace_compCLE]
|
||||||
rw [t₁]
|
rw [t₁]
|
||||||
simp
|
simp
|
||||||
sorry
|
|
||||||
sorry
|
-- ContDiff ℝ 2 (Complex.log ∘ f)
|
||||||
sorry
|
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff t₀)
|
||||||
|
|
||||||
|
-- ContDiff ℝ 2 (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f)
|
||||||
|
rw [t₂, t₃]
|
||||||
|
apply ContDiff.comp
|
||||||
|
exact ContinuousLinearEquiv.contDiff Complex.conjCLE
|
||||||
|
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff t₀)
|
||||||
|
|
||||||
|
-- ContDiff ℝ 2 (Complex.log ∘ f)
|
||||||
|
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff t₀)
|
||||||
|
|
||||||
|
-- ContDiff ℝ 2 (Real.log ∘ ⇑Complex.normSq ∘ f)
|
||||||
|
exact t₄
|
||||||
|
|
Loading…
Reference in New Issue