Update complexHarmonic.lean

This commit is contained in:
Stefan Kebekus 2024-05-16 09:19:45 +02:00
parent bfeade4095
commit bb2732106c

View File

@ -126,6 +126,13 @@ theorem logabs_of_holomorphic_is_harmonic
have f_is_real_C2 : ContDiff 2 f :=
ContDiff.restrict_scalars (Differentiable.contDiff h₁)
-- Complex.log ∘ f is real C²
have t₀ : Differentiable (Complex.log ∘ f) := by
intro z
apply DifferentiableAt.comp
exact Complex.differentiableAt_log (h₃ z)
exact h₁ z
-- The norm square is z * z.conj
have normSq_conj : ∀ (z : ), (starRingEnd ) z * z = ↑‖z‖ ^ 2 := Complex.conj_mul'
@ -231,14 +238,8 @@ theorem logabs_of_holomorphic_is_harmonic
rw [this]
rw [laplace_add]
have : Differentiable (Complex.log ∘ f) := by
intro z
apply DifferentiableAt.comp
exact Complex.differentiableAt_log (h₃ z)
exact h₁ z
have t₁: Complex.laplace (Complex.log ∘ f) = 0 := by
let A := holomorphic_is_harmonic this
let A := holomorphic_is_harmonic t₀
funext z
exact A.2 z
rw [t₁]
@ -257,6 +258,23 @@ theorem logabs_of_holomorphic_is_harmonic
rw [laplace_compCLE]
rw [t₁]
simp
-- ContDiff 2 (Complex.log ∘ f)
exact ContDiff.restrict_scalars (Differentiable.contDiff t₀)
-- ContDiff 2 (Complex.log ∘ ⇑(starRingEnd ) ∘ f)
sorry
sorry
sorry
-- ContDiff 2 (Complex.log ∘ f)
exact ContDiff.restrict_scalars (Differentiable.contDiff t₀)
-- ContDiff 2 (Real.log ∘ ⇑Complex.normSq ∘ f)
rw [contDiff_iff_contDiffAt]
intro z
apply ContDiffAt.comp
apply Real.contDiffAt_log.mpr
simp
exact h₂ z
apply ContDiff.comp_contDiffAt z normSq_is_real_C2
exact ContDiff.contDiffAt f_is_real_C2