Update complexHarmonic.lean

This commit is contained in:
Stefan Kebekus 2024-05-16 09:37:17 +02:00
parent bb2732106c
commit 015ab14131

View File

@ -133,6 +133,15 @@ theorem logabs_of_holomorphic_is_harmonic
exact Complex.differentiableAt_log (h₃ z)
exact h₁ z
have t₂ : Complex.log ∘ ⇑(starRingEnd ) ∘ f = ⇑(starRingEnd ) ∘ Complex.log ∘ f := by
funext z
unfold Function.comp
rw [Complex.log_conj]
exact Complex.slitPlane_arg_ne_pi (h₃ z)
have t₃ : ⇑(starRingEnd ) ∘ Complex.log ∘ f = Complex.conjCLE ∘ Complex.log ∘ f := by
rfl
-- The norm square is z * z.conj
have normSq_conj : ∀ (z : ), (starRingEnd ) z * z = ↑‖z‖ ^ 2 := Complex.conj_mul'
@ -152,6 +161,16 @@ theorem logabs_of_holomorphic_is_harmonic
apply ContinuousLinearMap.contDiff Complex.imCLM
apply ContinuousLinearMap.contDiff Complex.imCLM
have t₄ : ContDiff 2 (Real.log ∘ ⇑Complex.normSq ∘ f) := by
rw [contDiff_iff_contDiffAt]
intro z
apply ContDiffAt.comp
apply Real.contDiffAt_log.mpr
simp
exact h₂ z
apply ContDiff.comp_contDiffAt z normSq_is_real_C2
exact ContDiff.contDiffAt f_is_real_C2
constructor
· -- logabs f is real C²
have : (fun z ↦ Real.log ‖f z‖) = (2 : )⁻¹ • (Real.log ∘ Complex.normSq ∘ f) := by
@ -198,7 +217,8 @@ theorem logabs_of_holomorphic_is_harmonic
intro z
rw [laplace_compContLin]
simp
sorry
-- ContDiff 2 (Real.log ∘ ⇑Complex.normSq ∘ f)
exact t₄
conv =>
intro z
rw [this z]
@ -245,16 +265,9 @@ theorem logabs_of_holomorphic_is_harmonic
rw [t₁]
simp
have : Complex.log ∘ ⇑(starRingEnd ) ∘ f = ⇑(starRingEnd ) ∘ Complex.log ∘ f := by
funext z
unfold Function.comp
rw [Complex.log_conj]
exact Complex.slitPlane_arg_ne_pi (h₃ z)
rw [this]
rw [t₂]
have : ⇑(starRingEnd ) ∘ Complex.log ∘ f = Complex.conjCLE ∘ Complex.log ∘ f := by
rfl
rw [this]
rw [t₃]
rw [laplace_compCLE]
rw [t₁]
simp
@ -263,18 +276,13 @@ theorem logabs_of_holomorphic_is_harmonic
exact ContDiff.restrict_scalars (Differentiable.contDiff t₀)
-- ContDiff 2 (Complex.log ∘ ⇑(starRingEnd ) ∘ f)
sorry
rw [t₂, t₃]
apply ContDiff.comp
exact ContinuousLinearEquiv.contDiff Complex.conjCLE
exact ContDiff.restrict_scalars (Differentiable.contDiff t₀)
-- ContDiff 2 (Complex.log ∘ f)
exact ContDiff.restrict_scalars (Differentiable.contDiff t₀)
-- ContDiff 2 (Real.log ∘ ⇑Complex.normSq ∘ f)
rw [contDiff_iff_contDiffAt]
intro z
apply ContDiffAt.comp
apply Real.contDiffAt_log.mpr
simp
exact h₂ z
apply ContDiff.comp_contDiffAt z normSq_is_real_C2
exact ContDiff.contDiffAt f_is_real_C2
exact t₄