Compare commits
4 Commits
81f1c6ae94
...
971b7cc23c
Author | SHA1 | Date |
---|---|---|
Stefan Kebekus | 971b7cc23c | |
Stefan Kebekus | ab02fe715e | |
Stefan Kebekus | 513c122036 | |
Stefan Kebekus | 32f0bdf6e1 |
|
@ -308,3 +308,37 @@ theorem AnalyticAt.zpow
|
||||||
intro x
|
intro x
|
||||||
rw [zpow_neg]
|
rw [zpow_neg]
|
||||||
exact AnalyticAt.inv (zpow_nonneg h₁f (by linarith)) (zpow_ne_zero (-n) h₂f)
|
exact AnalyticAt.inv (zpow_nonneg h₁f (by linarith)) (zpow_ne_zero (-n) h₂f)
|
||||||
|
|
||||||
|
|
||||||
|
/- A function is analytic at a point iff it is analytic after multiplication
|
||||||
|
with a non-vanishing analytic function
|
||||||
|
-/
|
||||||
|
theorem analyticAt_of_mul_analytic
|
||||||
|
{f g : ℂ → ℂ}
|
||||||
|
{z₀ : ℂ}
|
||||||
|
(h₁g : AnalyticAt ℂ g z₀)
|
||||||
|
(h₂g : g z₀ ≠ 0) :
|
||||||
|
AnalyticAt ℂ f z₀ ↔ AnalyticAt ℂ (f * g) z₀ := by
|
||||||
|
constructor
|
||||||
|
· exact fun a => AnalyticAt.mul₁ a h₁g
|
||||||
|
· intro hprod
|
||||||
|
|
||||||
|
let g' := fun z ↦ (g z)⁻¹
|
||||||
|
have h₁g' := h₁g.inv h₂g
|
||||||
|
have h₂g' : g' z₀ ≠ 0 := by
|
||||||
|
exact inv_ne_zero h₂g
|
||||||
|
|
||||||
|
have : f =ᶠ[𝓝 z₀] f * g * fun x => (g x)⁻¹ := by
|
||||||
|
unfold Filter.EventuallyEq
|
||||||
|
apply Filter.eventually_iff_exists_mem.mpr
|
||||||
|
use g⁻¹' {0}ᶜ
|
||||||
|
constructor
|
||||||
|
· apply ContinuousAt.preimage_mem_nhds
|
||||||
|
exact AnalyticAt.continuousAt h₁g
|
||||||
|
exact compl_singleton_mem_nhds_iff.mpr h₂g
|
||||||
|
· intro y hy
|
||||||
|
simp at hy
|
||||||
|
simp [hy]
|
||||||
|
rw [analyticAt_congr this]
|
||||||
|
apply hprod.mul
|
||||||
|
exact h₁g'
|
||||||
|
|
|
@ -15,6 +15,51 @@ def StronglyMeromorphicAt
|
||||||
(∀ᶠ (z : ℂ) in nhds z₀, f z = 0) ∨ (∃ (n : ℤ), ∃ g : ℂ → ℂ, (AnalyticAt ℂ g z₀) ∧ (g z₀ ≠ 0) ∧ (∀ᶠ (z : ℂ) in nhds z₀, f z = (z - z₀) ^ n • g z))
|
(∀ᶠ (z : ℂ) in nhds z₀, f z = 0) ∨ (∃ (n : ℤ), ∃ g : ℂ → ℂ, (AnalyticAt ℂ g z₀) ∧ (g z₀ ≠ 0) ∧ (∀ᶠ (z : ℂ) in nhds z₀, f z = (z - z₀) ^ n • g z))
|
||||||
|
|
||||||
|
|
||||||
|
lemma stronglyMeromorphicAt_of_mul_analytic'
|
||||||
|
{f g : ℂ → ℂ}
|
||||||
|
{z₀ : ℂ}
|
||||||
|
(h₁g : AnalyticAt ℂ g z₀)
|
||||||
|
(h₂g : g z₀ ≠ 0) :
|
||||||
|
StronglyMeromorphicAt f z₀ → StronglyMeromorphicAt (f * g) z₀ := by
|
||||||
|
|
||||||
|
intro hf
|
||||||
|
--unfold StronglyMeromorphicAt at hf
|
||||||
|
rcases hf with h₁f|h₁f
|
||||||
|
· left
|
||||||
|
rw [eventually_nhds_iff] at h₁f
|
||||||
|
obtain ⟨t, ht⟩ := h₁f
|
||||||
|
rw [eventually_nhds_iff]
|
||||||
|
use t
|
||||||
|
constructor
|
||||||
|
· intro y hy
|
||||||
|
simp
|
||||||
|
left
|
||||||
|
exact ht.1 y hy
|
||||||
|
· exact ht.2
|
||||||
|
· right
|
||||||
|
obtain ⟨n, g_f, h₁g_f, h₂g_f, h₃g_f⟩ := h₁f
|
||||||
|
use n
|
||||||
|
use g * g_f
|
||||||
|
constructor
|
||||||
|
· apply AnalyticAt.mul
|
||||||
|
exact h₁g
|
||||||
|
exact h₁g_f
|
||||||
|
· constructor
|
||||||
|
· simp
|
||||||
|
exact ⟨h₂g, h₂g_f⟩
|
||||||
|
· rw [eventually_nhds_iff] at h₃g_f
|
||||||
|
obtain ⟨t, ht⟩ := h₃g_f
|
||||||
|
rw [eventually_nhds_iff]
|
||||||
|
use t
|
||||||
|
constructor
|
||||||
|
· intro y hy
|
||||||
|
simp
|
||||||
|
rw [ht.1]
|
||||||
|
simp
|
||||||
|
ring
|
||||||
|
exact hy
|
||||||
|
· exact ht.2
|
||||||
|
|
||||||
|
|
||||||
/- Strongly MeromorphicAt is Meromorphic -/
|
/- Strongly MeromorphicAt is Meromorphic -/
|
||||||
theorem StronglyMeromorphicAt.meromorphicAt
|
theorem StronglyMeromorphicAt.meromorphicAt
|
||||||
|
@ -124,6 +169,37 @@ theorem stronglyMeromorphicAt_congr
|
||||||
· apply Filter.EventuallyEq.trans hfg
|
· apply Filter.EventuallyEq.trans hfg
|
||||||
assumption
|
assumption
|
||||||
|
|
||||||
|
/- A function is strongly meromorphic at a point iff it is strongly meromorphic
|
||||||
|
after multiplication with a non-vanishing analytic function
|
||||||
|
-/
|
||||||
|
theorem stronglyMeromorphicAt_of_mul_analytic
|
||||||
|
{f g : ℂ → ℂ}
|
||||||
|
{z₀ : ℂ}
|
||||||
|
(h₁g : AnalyticAt ℂ g z₀)
|
||||||
|
(h₂g : g z₀ ≠ 0) :
|
||||||
|
StronglyMeromorphicAt f z₀ ↔ StronglyMeromorphicAt (f * g) z₀ := by
|
||||||
|
constructor
|
||||||
|
· apply stronglyMeromorphicAt_of_mul_analytic' h₁g h₂g
|
||||||
|
· intro hprod
|
||||||
|
let g' := fun z ↦ (g z)⁻¹
|
||||||
|
have h₁g' := h₁g.inv h₂g
|
||||||
|
have h₂g' : g' z₀ ≠ 0 := by
|
||||||
|
exact inv_ne_zero h₂g
|
||||||
|
|
||||||
|
let B := stronglyMeromorphicAt_of_mul_analytic' h₁g' h₂g' (f := f * g) hprod
|
||||||
|
have : f =ᶠ[𝓝 z₀] f * g * fun x => (g x)⁻¹ := by
|
||||||
|
unfold Filter.EventuallyEq
|
||||||
|
apply Filter.eventually_iff_exists_mem.mpr
|
||||||
|
use g⁻¹' {0}ᶜ
|
||||||
|
constructor
|
||||||
|
· apply ContinuousAt.preimage_mem_nhds
|
||||||
|
exact AnalyticAt.continuousAt h₁g
|
||||||
|
exact compl_singleton_mem_nhds_iff.mpr h₂g
|
||||||
|
· intro y hy
|
||||||
|
simp at hy
|
||||||
|
simp [hy]
|
||||||
|
rwa [stronglyMeromorphicAt_congr this]
|
||||||
|
|
||||||
|
|
||||||
theorem StronglyMeromorphicAt.order_eq_zero_iff
|
theorem StronglyMeromorphicAt.order_eq_zero_iff
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
|
|
|
@ -10,22 +10,14 @@ import Nevanlinna.mathlibAddOn
|
||||||
open scoped Interval Topology
|
open scoped Interval Topology
|
||||||
open Real Filter MeasureTheory intervalIntegral
|
open Real Filter MeasureTheory intervalIntegral
|
||||||
|
|
||||||
lemma untop_eq_untop'
|
|
||||||
{n : WithTop ℤ}
|
|
||||||
(hn : n ≠ ⊤) :
|
|
||||||
n.untop' 0 = n.untop hn := by
|
|
||||||
rw [WithTop.untop'_eq_iff]
|
|
||||||
simp
|
|
||||||
|
|
||||||
|
|
||||||
theorem MeromorphicOn.decompose₁
|
theorem MeromorphicOn.decompose₁
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
{U : Set ℂ}
|
{U : Set ℂ}
|
||||||
{z₀ : ℂ}
|
{z₀ : ℂ}
|
||||||
(hz₀ : z₀ ∈ U)
|
|
||||||
(h₁f : MeromorphicOn f U)
|
(h₁f : MeromorphicOn f U)
|
||||||
(h₂f : StronglyMeromorphicAt f z₀)
|
(h₂f : StronglyMeromorphicAt f z₀)
|
||||||
(h₃f : h₂f.meromorphicAt.order ≠ ⊤) :
|
(h₃f : h₂f.meromorphicAt.order ≠ ⊤)
|
||||||
|
(hz₀ : z₀ ∈ U) :
|
||||||
∃ g : ℂ → ℂ, (MeromorphicOn g U)
|
∃ g : ℂ → ℂ, (MeromorphicOn g U)
|
||||||
∧ (AnalyticAt ℂ g z₀)
|
∧ (AnalyticAt ℂ g z₀)
|
||||||
∧ (g z₀ ≠ 0)
|
∧ (g z₀ ≠ 0)
|
||||||
|
@ -149,3 +141,152 @@ theorem MeromorphicOn.decompose₁
|
||||||
simp
|
simp
|
||||||
apply zpow_ne_zero
|
apply zpow_ne_zero
|
||||||
rwa [sub_ne_zero]
|
rwa [sub_ne_zero]
|
||||||
|
|
||||||
|
|
||||||
|
theorem MeromorphicOn.decompose₂
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
{U : Set ℂ}
|
||||||
|
{P : Finset U}
|
||||||
|
(hf : StronglyMeromorphicOn f U) :
|
||||||
|
(∀ p ∈ P, (hf p p.2).meromorphicAt.order ≠ ⊤) →
|
||||||
|
∃ g : ℂ → ℂ, (MeromorphicOn g U)
|
||||||
|
∧ (∀ p : P, AnalyticAt ℂ g p)
|
||||||
|
∧ (∀ p : P, g p ≠ 0)
|
||||||
|
∧ (f = g * ∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
|
||||||
|
|
||||||
|
apply Finset.induction (p := fun (P : Finset U) ↦
|
||||||
|
(∀ p ∈ P, (hf p p.2).meromorphicAt.order ≠ ⊤) →
|
||||||
|
∃ g : ℂ → ℂ, (MeromorphicOn g U)
|
||||||
|
∧ (∀ p : P, AnalyticAt ℂ g p)
|
||||||
|
∧ (∀ p : P, g p ≠ 0)
|
||||||
|
∧ (f = g * ∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)))
|
||||||
|
|
||||||
|
-- case empty
|
||||||
|
simp
|
||||||
|
exact hf.meromorphicOn
|
||||||
|
|
||||||
|
-- case insert
|
||||||
|
intro u P hu iHyp
|
||||||
|
intro hOrder
|
||||||
|
obtain ⟨g₀, h₁g₀, h₂g₀, h₃g₀, h₄g₀⟩ := iHyp (fun p hp ↦ hOrder p (Finset.mem_insert_of_mem hp))
|
||||||
|
|
||||||
|
have h₀ : AnalyticAt ℂ (∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) u := by
|
||||||
|
have : (∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) = (fun z => ∏ p : P, (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
|
||||||
|
funext w
|
||||||
|
simp
|
||||||
|
rw [this]
|
||||||
|
apply Finset.analyticAt_prod
|
||||||
|
intro p hp
|
||||||
|
apply AnalyticAt.zpow
|
||||||
|
apply AnalyticAt.sub
|
||||||
|
apply analyticAt_id
|
||||||
|
apply analyticAt_const
|
||||||
|
by_contra hCon
|
||||||
|
rw [sub_eq_zero] at hCon
|
||||||
|
have : p.1 = u := by
|
||||||
|
exact SetCoe.ext (_root_.id (Eq.symm hCon))
|
||||||
|
rw [← this] at hu
|
||||||
|
simp [hp] at hu
|
||||||
|
|
||||||
|
have h₁ : (∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) u ≠ 0 := by
|
||||||
|
simp only [Finset.prod_apply]
|
||||||
|
rw [Finset.prod_ne_zero_iff]
|
||||||
|
intro p hp
|
||||||
|
apply zpow_ne_zero
|
||||||
|
by_contra hCon
|
||||||
|
rw [sub_eq_zero] at hCon
|
||||||
|
have : p.1 = u := by
|
||||||
|
exact SetCoe.ext (_root_.id (Eq.symm hCon))
|
||||||
|
rw [← this] at hu
|
||||||
|
simp [hp] at hu
|
||||||
|
|
||||||
|
have h₅g₀ : StronglyMeromorphicAt g₀ u := by
|
||||||
|
rw [stronglyMeromorphicAt_of_mul_analytic h₀ h₁]
|
||||||
|
rw [← h₄g₀]
|
||||||
|
exact hf u u.2
|
||||||
|
|
||||||
|
have h₆g₀ : (h₁g₀ u u.2).order ≠ ⊤ := by
|
||||||
|
by_contra hCon
|
||||||
|
let A := (h₁g₀ u u.2).order_mul h₀.meromorphicAt
|
||||||
|
simp_rw [← h₄g₀, hCon] at A
|
||||||
|
simp at A
|
||||||
|
let B := hOrder u (Finset.mem_insert_self u P)
|
||||||
|
tauto
|
||||||
|
|
||||||
|
obtain ⟨g, h₁g, h₂g, h₃g, h₄g⟩ := h₁g₀.decompose₁ h₅g₀ h₆g₀ u.2
|
||||||
|
use g
|
||||||
|
· constructor
|
||||||
|
· exact h₁g
|
||||||
|
· constructor
|
||||||
|
· intro ⟨v₁, v₂⟩
|
||||||
|
simp
|
||||||
|
simp at v₂
|
||||||
|
rcases v₂ with hv|hv
|
||||||
|
· rwa [hv]
|
||||||
|
· let A := h₂g₀ ⟨v₁, hv⟩
|
||||||
|
rw [h₄g] at A
|
||||||
|
rw [← analyticAt_of_mul_analytic] at A
|
||||||
|
simp at A
|
||||||
|
exact A
|
||||||
|
--
|
||||||
|
simp
|
||||||
|
apply AnalyticAt.zpow
|
||||||
|
apply AnalyticAt.sub
|
||||||
|
apply analyticAt_id
|
||||||
|
apply analyticAt_const
|
||||||
|
by_contra hCon
|
||||||
|
rw [sub_eq_zero] at hCon
|
||||||
|
|
||||||
|
have : v₁ = u := by
|
||||||
|
exact SetCoe.ext hCon
|
||||||
|
rw [this] at hv
|
||||||
|
tauto
|
||||||
|
--
|
||||||
|
apply zpow_ne_zero
|
||||||
|
simp
|
||||||
|
by_contra hCon
|
||||||
|
rw [sub_eq_zero] at hCon
|
||||||
|
have : v₁ = u := by
|
||||||
|
exact SetCoe.ext hCon
|
||||||
|
rw [this] at hv
|
||||||
|
tauto
|
||||||
|
|
||||||
|
· constructor
|
||||||
|
· intro ⟨v₁, v₂⟩
|
||||||
|
simp
|
||||||
|
simp at v₂
|
||||||
|
rcases v₂ with hv|hv
|
||||||
|
· rwa [hv]
|
||||||
|
· by_contra hCon
|
||||||
|
let A := h₃g₀ ⟨v₁,hv⟩
|
||||||
|
rw [h₄g] at A
|
||||||
|
simp at A
|
||||||
|
tauto
|
||||||
|
· conv =>
|
||||||
|
left
|
||||||
|
rw [h₄g₀, h₄g]
|
||||||
|
simp
|
||||||
|
rw [mul_assoc]
|
||||||
|
congr
|
||||||
|
rw [Finset.prod_insert]
|
||||||
|
simp
|
||||||
|
congr
|
||||||
|
have : (hf u u.2).meromorphicAt.order = (h₁g₀ u u.2).order := by
|
||||||
|
have h₅g₀ : f =ᶠ[𝓝 u.1] (g₀ * ∏ p : P, fun z => (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
|
||||||
|
exact Eq.eventuallyEq h₄g₀
|
||||||
|
have h₆g₀ : f =ᶠ[𝓝[≠] u.1] (g₀ * ∏ p : P, fun z => (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
|
||||||
|
exact eventuallyEq_nhdsWithin_of_eqOn fun ⦃x⦄ a => congrFun h₄g₀ x
|
||||||
|
rw [(hf u u.2).meromorphicAt.order_congr h₆g₀]
|
||||||
|
let C := (h₁g₀ u u.2).order_mul h₀.meromorphicAt
|
||||||
|
rw [C]
|
||||||
|
let D := h₀.order_eq_zero_iff.2 h₁
|
||||||
|
let E := h₀.meromorphicAt_order
|
||||||
|
rw [E, D]
|
||||||
|
simp
|
||||||
|
have : hf.meromorphicOn.divisor u = h₁g₀.divisor u := by
|
||||||
|
unfold MeromorphicOn.divisor
|
||||||
|
simp
|
||||||
|
rw [this]
|
||||||
|
rw [this]
|
||||||
|
--
|
||||||
|
simpa
|
||||||
|
|
Loading…
Reference in New Issue