Compare commits

..

4 Commits

Author SHA1 Message Date
Stefan Kebekus 971b7cc23c Working! 2024-11-19 15:54:28 +01:00
Stefan Kebekus ab02fe715e Update stronglyMeromorphicOn_eliminate.lean 2024-11-19 13:57:08 +01:00
Stefan Kebekus 513c122036 working 2024-11-19 13:20:19 +01:00
Stefan Kebekus 32f0bdf6e1 Update stronglyMeromorphicOn_eliminate.lean 2024-11-19 12:06:03 +01:00
3 changed files with 261 additions and 10 deletions

View File

@ -308,3 +308,37 @@ theorem AnalyticAt.zpow
intro x intro x
rw [zpow_neg] rw [zpow_neg]
exact AnalyticAt.inv (zpow_nonneg h₁f (by linarith)) (zpow_ne_zero (-n) h₂f) exact AnalyticAt.inv (zpow_nonneg h₁f (by linarith)) (zpow_ne_zero (-n) h₂f)
/- A function is analytic at a point iff it is analytic after multiplication
with a non-vanishing analytic function
-/
theorem analyticAt_of_mul_analytic
{f g : }
{z₀ : }
(h₁g : AnalyticAt g z₀)
(h₂g : g z₀ ≠ 0) :
AnalyticAt f z₀ ↔ AnalyticAt (f * g) z₀ := by
constructor
· exact fun a => AnalyticAt.mul₁ a h₁g
· intro hprod
let g' := fun z ↦ (g z)⁻¹
have h₁g' := h₁g.inv h₂g
have h₂g' : g' z₀ ≠ 0 := by
exact inv_ne_zero h₂g
have : f =ᶠ[𝓝 z₀] f * g * fun x => (g x)⁻¹ := by
unfold Filter.EventuallyEq
apply Filter.eventually_iff_exists_mem.mpr
use g⁻¹' {0}ᶜ
constructor
· apply ContinuousAt.preimage_mem_nhds
exact AnalyticAt.continuousAt h₁g
exact compl_singleton_mem_nhds_iff.mpr h₂g
· intro y hy
simp at hy
simp [hy]
rw [analyticAt_congr this]
apply hprod.mul
exact h₁g'

View File

@ -15,6 +15,51 @@ def StronglyMeromorphicAt
(∀ᶠ (z : ) in nhds z₀, f z = 0) (∃ (n : ), ∃ g : , (AnalyticAt g z₀) ∧ (g z₀ ≠ 0) ∧ (∀ᶠ (z : ) in nhds z₀, f z = (z - z₀) ^ n • g z)) (∀ᶠ (z : ) in nhds z₀, f z = 0) (∃ (n : ), ∃ g : , (AnalyticAt g z₀) ∧ (g z₀ ≠ 0) ∧ (∀ᶠ (z : ) in nhds z₀, f z = (z - z₀) ^ n • g z))
lemma stronglyMeromorphicAt_of_mul_analytic'
{f g : }
{z₀ : }
(h₁g : AnalyticAt g z₀)
(h₂g : g z₀ ≠ 0) :
StronglyMeromorphicAt f z₀ → StronglyMeromorphicAt (f * g) z₀ := by
intro hf
--unfold StronglyMeromorphicAt at hf
rcases hf with h₁f|h₁f
· left
rw [eventually_nhds_iff] at h₁f
obtain ⟨t, ht⟩ := h₁f
rw [eventually_nhds_iff]
use t
constructor
· intro y hy
simp
left
exact ht.1 y hy
· exact ht.2
· right
obtain ⟨n, g_f, h₁g_f, h₂g_f, h₃g_f⟩ := h₁f
use n
use g * g_f
constructor
· apply AnalyticAt.mul
exact h₁g
exact h₁g_f
· constructor
· simp
exact ⟨h₂g, h₂g_f⟩
· rw [eventually_nhds_iff] at h₃g_f
obtain ⟨t, ht⟩ := h₃g_f
rw [eventually_nhds_iff]
use t
constructor
· intro y hy
simp
rw [ht.1]
simp
ring
exact hy
· exact ht.2
/- Strongly MeromorphicAt is Meromorphic -/ /- Strongly MeromorphicAt is Meromorphic -/
theorem StronglyMeromorphicAt.meromorphicAt theorem StronglyMeromorphicAt.meromorphicAt
@ -124,6 +169,37 @@ theorem stronglyMeromorphicAt_congr
· apply Filter.EventuallyEq.trans hfg · apply Filter.EventuallyEq.trans hfg
assumption assumption
/- A function is strongly meromorphic at a point iff it is strongly meromorphic
after multiplication with a non-vanishing analytic function
-/
theorem stronglyMeromorphicAt_of_mul_analytic
{f g : }
{z₀ : }
(h₁g : AnalyticAt g z₀)
(h₂g : g z₀ ≠ 0) :
StronglyMeromorphicAt f z₀ ↔ StronglyMeromorphicAt (f * g) z₀ := by
constructor
· apply stronglyMeromorphicAt_of_mul_analytic' h₁g h₂g
· intro hprod
let g' := fun z ↦ (g z)⁻¹
have h₁g' := h₁g.inv h₂g
have h₂g' : g' z₀ ≠ 0 := by
exact inv_ne_zero h₂g
let B := stronglyMeromorphicAt_of_mul_analytic' h₁g' h₂g' (f := f * g) hprod
have : f =ᶠ[𝓝 z₀] f * g * fun x => (g x)⁻¹ := by
unfold Filter.EventuallyEq
apply Filter.eventually_iff_exists_mem.mpr
use g⁻¹' {0}ᶜ
constructor
· apply ContinuousAt.preimage_mem_nhds
exact AnalyticAt.continuousAt h₁g
exact compl_singleton_mem_nhds_iff.mpr h₂g
· intro y hy
simp at hy
simp [hy]
rwa [stronglyMeromorphicAt_congr this]
theorem StronglyMeromorphicAt.order_eq_zero_iff theorem StronglyMeromorphicAt.order_eq_zero_iff
{f : } {f : }

View File

@ -10,22 +10,14 @@ import Nevanlinna.mathlibAddOn
open scoped Interval Topology open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral open Real Filter MeasureTheory intervalIntegral
lemma untop_eq_untop'
{n : WithTop }
(hn : n ≠ ) :
n.untop' 0 = n.untop hn := by
rw [WithTop.untop'_eq_iff]
simp
theorem MeromorphicOn.decompose₁ theorem MeromorphicOn.decompose₁
{f : } {f : }
{U : Set } {U : Set }
{z₀ : } {z₀ : }
(hz₀ : z₀ ∈ U)
(h₁f : MeromorphicOn f U) (h₁f : MeromorphicOn f U)
(h₂f : StronglyMeromorphicAt f z₀) (h₂f : StronglyMeromorphicAt f z₀)
(h₃f : h₂f.meromorphicAt.order ≠ ) : (h₃f : h₂f.meromorphicAt.order ≠ )
(hz₀ : z₀ ∈ U) :
∃ g : , (MeromorphicOn g U) ∃ g : , (MeromorphicOn g U)
∧ (AnalyticAt g z₀) ∧ (AnalyticAt g z₀)
∧ (g z₀ ≠ 0) ∧ (g z₀ ≠ 0)
@ -149,3 +141,152 @@ theorem MeromorphicOn.decompose₁
simp simp
apply zpow_ne_zero apply zpow_ne_zero
rwa [sub_ne_zero] rwa [sub_ne_zero]
theorem MeromorphicOn.decompose₂
{f : }
{U : Set }
{P : Finset U}
(hf : StronglyMeromorphicOn f U) :
(∀ p ∈ P, (hf p p.2).meromorphicAt.order ≠ ) →
∃ g : , (MeromorphicOn g U)
∧ (∀ p : P, AnalyticAt g p)
∧ (∀ p : P, g p ≠ 0)
∧ (f = g * ∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
apply Finset.induction (p := fun (P : Finset U) ↦
(∀ p ∈ P, (hf p p.2).meromorphicAt.order ≠ ) →
∃ g : , (MeromorphicOn g U)
∧ (∀ p : P, AnalyticAt g p)
∧ (∀ p : P, g p ≠ 0)
∧ (f = g * ∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)))
-- case empty
simp
exact hf.meromorphicOn
-- case insert
intro u P hu iHyp
intro hOrder
obtain ⟨g₀, h₁g₀, h₂g₀, h₃g₀, h₄g₀⟩ := iHyp (fun p hp ↦ hOrder p (Finset.mem_insert_of_mem hp))
have h₀ : AnalyticAt (∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) u := by
have : (∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) = (fun z => ∏ p : P, (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
funext w
simp
rw [this]
apply Finset.analyticAt_prod
intro p hp
apply AnalyticAt.zpow
apply AnalyticAt.sub
apply analyticAt_id
apply analyticAt_const
by_contra hCon
rw [sub_eq_zero] at hCon
have : p.1 = u := by
exact SetCoe.ext (_root_.id (Eq.symm hCon))
rw [← this] at hu
simp [hp] at hu
have h₁ : (∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) u ≠ 0 := by
simp only [Finset.prod_apply]
rw [Finset.prod_ne_zero_iff]
intro p hp
apply zpow_ne_zero
by_contra hCon
rw [sub_eq_zero] at hCon
have : p.1 = u := by
exact SetCoe.ext (_root_.id (Eq.symm hCon))
rw [← this] at hu
simp [hp] at hu
have h₅g₀ : StronglyMeromorphicAt g₀ u := by
rw [stronglyMeromorphicAt_of_mul_analytic h₀ h₁]
rw [← h₄g₀]
exact hf u u.2
have h₆g₀ : (h₁g₀ u u.2).order ≠ := by
by_contra hCon
let A := (h₁g₀ u u.2).order_mul h₀.meromorphicAt
simp_rw [← h₄g₀, hCon] at A
simp at A
let B := hOrder u (Finset.mem_insert_self u P)
tauto
obtain ⟨g, h₁g, h₂g, h₃g, h₄g⟩ := h₁g₀.decompose₁ h₅g₀ h₆g₀ u.2
use g
· constructor
· exact h₁g
· constructor
· intro ⟨v₁, v₂⟩
simp
simp at v₂
rcases v₂ with hv|hv
· rwa [hv]
· let A := h₂g₀ ⟨v₁, hv⟩
rw [h₄g] at A
rw [← analyticAt_of_mul_analytic] at A
simp at A
exact A
--
simp
apply AnalyticAt.zpow
apply AnalyticAt.sub
apply analyticAt_id
apply analyticAt_const
by_contra hCon
rw [sub_eq_zero] at hCon
have : v₁ = u := by
exact SetCoe.ext hCon
rw [this] at hv
tauto
--
apply zpow_ne_zero
simp
by_contra hCon
rw [sub_eq_zero] at hCon
have : v₁ = u := by
exact SetCoe.ext hCon
rw [this] at hv
tauto
· constructor
· intro ⟨v₁, v₂⟩
simp
simp at v₂
rcases v₂ with hv|hv
· rwa [hv]
· by_contra hCon
let A := h₃g₀ ⟨v₁,hv⟩
rw [h₄g] at A
simp at A
tauto
· conv =>
left
rw [h₄g₀, h₄g]
simp
rw [mul_assoc]
congr
rw [Finset.prod_insert]
simp
congr
have : (hf u u.2).meromorphicAt.order = (h₁g₀ u u.2).order := by
have h₅g₀ : f =ᶠ[𝓝 u.1] (g₀ * ∏ p : P, fun z => (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
exact Eq.eventuallyEq h₄g₀
have h₆g₀ : f =ᶠ[𝓝[≠] u.1] (g₀ * ∏ p : P, fun z => (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
exact eventuallyEq_nhdsWithin_of_eqOn fun ⦃x⦄ a => congrFun h₄g₀ x
rw [(hf u u.2).meromorphicAt.order_congr h₆g₀]
let C := (h₁g₀ u u.2).order_mul h₀.meromorphicAt
rw [C]
let D := h₀.order_eq_zero_iff.2 h₁
let E := h₀.meromorphicAt_order
rw [E, D]
simp
have : hf.meromorphicOn.divisor u = h₁g₀.divisor u := by
unfold MeromorphicOn.divisor
simp
rw [this]
rw [this]
--
simpa