Compare commits
8 Commits
6bdb910b7c
...
83f9aa5d72
Author | SHA1 | Date |
---|---|---|
Stefan Kebekus | 83f9aa5d72 | |
Stefan Kebekus | 951c25624e | |
Stefan Kebekus | fc3a4ae3f3 | |
Stefan Kebekus | 656d50e367 | |
Stefan Kebekus | f0b84fcbff | |
Stefan Kebekus | ad5e7c69fd | |
Stefan Kebekus | c3289f89c7 | |
Stefan Kebekus | a2d3793df2 |
|
@ -20,8 +20,10 @@ theorem primitive_zeroAtBasepoint
|
|||
|
||||
theorem primitive_fderivAtBasepointZero
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
(f : ℂ → E)
|
||||
(hf : ContinuousAt f 0) :
|
||||
{f : ℂ → E}
|
||||
{R : ℝ}
|
||||
(hR : 0 < R)
|
||||
(hf : ContinuousOn f (Metric.ball 0 R)) :
|
||||
HasDerivAt (primitive 0 f) (f 0) 0 := by
|
||||
unfold primitive
|
||||
simp
|
||||
|
@ -45,20 +47,110 @@ theorem primitive_fderivAtBasepointZero
|
|||
arg 1
|
||||
arg 2
|
||||
rw [this]
|
||||
have {A B C D :E} : (A + B) - (C + D) = (A - C) + (B - D) := by
|
||||
abel
|
||||
have t₀ {r : ℝ} : IntervalIntegrable (fun x => f { re := x, im := 0 }) MeasureTheory.volume 0 r := by
|
||||
apply Continuous.intervalIntegrable
|
||||
apply Continuous.comp
|
||||
|
||||
obtain ⟨s, h₁s, h₂s⟩ : ∃ s ⊆ f⁻¹' Metric.ball (f 0) (c / (4 : ℝ)), IsOpen s ∧ 0 ∈ s := by
|
||||
have B : Metric.ball (f 0) (c / 4) ∈ nhds (f 0) := by
|
||||
apply Metric.ball_mem_nhds (f 0)
|
||||
linarith
|
||||
apply eventually_nhds_iff.mp
|
||||
apply continuousAt_def.1
|
||||
apply Continuous.continuousAt
|
||||
fun_prop
|
||||
|
||||
apply continuousAt_def.1
|
||||
apply hf.continuousAt
|
||||
exact Metric.ball_mem_nhds 0 hR
|
||||
apply Metric.ball_mem_nhds (f 0)
|
||||
simpa
|
||||
|
||||
obtain ⟨ε, h₁ε, h₂ε⟩ : ∃ ε > 0, (Metric.ball 0 ε) ×ℂ (Metric.ball 0 ε) ⊆ s ∧ (Metric.ball 0 ε) ×ℂ (Metric.ball 0 ε) ⊆ Metric.ball 0 R := by
|
||||
obtain ⟨ε', h₁ε', h₂ε'⟩ : ∃ ε' > 0, Metric.ball 0 ε' ⊆ s ∩ Metric.ball 0 R := by
|
||||
apply Metric.mem_nhds_iff.mp
|
||||
apply IsOpen.mem_nhds
|
||||
apply IsOpen.inter
|
||||
exact h₂s.1
|
||||
exact Metric.isOpen_ball
|
||||
constructor
|
||||
· exact h₂s.2
|
||||
· simpa
|
||||
|
||||
use (2 : ℝ)⁻¹ * ε'
|
||||
|
||||
constructor
|
||||
· simpa
|
||||
· constructor
|
||||
· intro x hx
|
||||
apply (h₂ε' _).1
|
||||
simp
|
||||
calc Complex.abs x
|
||||
_ ≤ |x.re| + |x.im| := Complex.abs_le_abs_re_add_abs_im x
|
||||
_ < (2 : ℝ)⁻¹ * ε' + |x.im| := by
|
||||
apply (add_lt_add_iff_right |x.im|).mpr
|
||||
have : x.re ∈ Metric.ball 0 (2⁻¹ * ε') := (Complex.mem_reProdIm.1 hx).1
|
||||
simp at this
|
||||
exact this
|
||||
_ < (2 : ℝ)⁻¹ * ε' + (2 : ℝ)⁻¹ * ε' := by
|
||||
apply (add_lt_add_iff_left ((2 : ℝ)⁻¹ * ε')).mpr
|
||||
have : x.im ∈ Metric.ball 0 (2⁻¹ * ε') := (Complex.mem_reProdIm.1 hx).2
|
||||
simp at this
|
||||
exact this
|
||||
_ = ε' := by
|
||||
rw [← add_mul]
|
||||
abel_nf
|
||||
simp
|
||||
· intro x hx
|
||||
apply (h₂ε' _).2
|
||||
simp
|
||||
calc Complex.abs x
|
||||
_ ≤ |x.re| + |x.im| := Complex.abs_le_abs_re_add_abs_im x
|
||||
_ < (2 : ℝ)⁻¹ * ε' + |x.im| := by
|
||||
apply (add_lt_add_iff_right |x.im|).mpr
|
||||
have : x.re ∈ Metric.ball 0 (2⁻¹ * ε') := (Complex.mem_reProdIm.1 hx).1
|
||||
simp at this
|
||||
exact this
|
||||
_ < (2 : ℝ)⁻¹ * ε' + (2 : ℝ)⁻¹ * ε' := by
|
||||
apply (add_lt_add_iff_left ((2 : ℝ)⁻¹ * ε')).mpr
|
||||
have : x.im ∈ Metric.ball 0 (2⁻¹ * ε') := (Complex.mem_reProdIm.1 hx).2
|
||||
simp at this
|
||||
exact this
|
||||
_ = ε' := by
|
||||
rw [← add_mul]
|
||||
abel_nf
|
||||
simp
|
||||
|
||||
have h₃ε : ∀ y ∈ (Metric.ball 0 ε) ×ℂ (Metric.ball 0 ε), ‖(f y) - (f 0)‖ < (c / (4 : ℝ)) := by
|
||||
intro y hy
|
||||
apply mem_ball_iff_norm.mp
|
||||
apply h₁s
|
||||
exact h₂ε.1 hy
|
||||
|
||||
have t₀ {r : ℝ} (hr : r ∈ Metric.ball 0 ε) : IntervalIntegrable (fun x => f { re := x, im := 0 }) MeasureTheory.volume 0 r := by
|
||||
apply ContinuousOn.intervalIntegrable
|
||||
apply ContinuousOn.comp
|
||||
exact hf
|
||||
have : (fun x => ({ re := x, im := 0 } : ℂ)) = Complex.ofRealLI := by rfl
|
||||
rw [this]
|
||||
apply Continuous.continuousOn
|
||||
continuity
|
||||
have t₁ {r : ℝ} : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 r := by
|
||||
apply Continuous.intervalIntegrable
|
||||
apply Continuous.comp
|
||||
exact hf
|
||||
intro x hx
|
||||
apply h₂ε.2
|
||||
simp
|
||||
constructor
|
||||
· simp
|
||||
calc |x|
|
||||
_ < ε := by
|
||||
sorry
|
||||
· simpa
|
||||
|
||||
have t₁ {r : ℝ} (hr : r ∈ Metric.ball 0 ε) : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 r := by
|
||||
apply ContinuousOn.intervalIntegrable
|
||||
apply ContinuousOn.comp
|
||||
apply hf
|
||||
fun_prop
|
||||
intro x hx
|
||||
simpa
|
||||
|
||||
|
||||
have t₂ {a b : ℝ} : IntervalIntegrable (fun x_1 => f { re := a, im := x_1 }) MeasureTheory.volume 0 b := by
|
||||
apply Continuous.intervalIntegrable
|
||||
apply Continuous.comp hf
|
||||
|
@ -78,6 +170,9 @@ theorem primitive_fderivAtBasepointZero
|
|||
apply Continuous.comp
|
||||
exact hf
|
||||
fun_prop
|
||||
|
||||
have {A B C D :E} : (A + B) - (C + D) = (A - C) + (B - D) := by
|
||||
abel
|
||||
conv =>
|
||||
left
|
||||
intro x
|
||||
|
@ -85,22 +180,12 @@ theorem primitive_fderivAtBasepointZero
|
|||
arg 1
|
||||
rw [this]
|
||||
rw [← smul_sub]
|
||||
|
||||
rw [← intervalIntegral.integral_sub t₀ t₁]
|
||||
rw [← intervalIntegral.integral_sub t₂ t₃]
|
||||
|
||||
rw [Filter.eventually_iff_exists_mem]
|
||||
|
||||
let s := f⁻¹' Metric.ball (f 0) (c / (4 : ℝ))
|
||||
have h₁s : IsOpen s := IsOpen.preimage hf Metric.isOpen_ball
|
||||
have h₂s : 0 ∈ s := by
|
||||
apply Set.mem_preimage.mpr
|
||||
apply Metric.mem_ball_self
|
||||
linarith
|
||||
|
||||
obtain ⟨ε, h₁ε, h₂ε⟩ := Metric.isOpen_iff.1 h₁s 0 h₂s
|
||||
|
||||
have h₃ε : ∀ y ∈ Metric.ball 0 ε, ‖(f y) - (f 0)‖ < (c / (4 : ℝ)) := by
|
||||
intro y hy
|
||||
apply mem_ball_iff_norm.mp (h₂ε hy)
|
||||
|
||||
use Metric.ball 0 (ε / (4 : ℝ))
|
||||
constructor
|
||||
|
@ -148,12 +233,11 @@ theorem primitive_fderivAtBasepointZero
|
|||
_ < ε / 4 := h₁y
|
||||
apply le_of_lt
|
||||
apply h₃ε { re := x, im := 0 }
|
||||
rw [mem_ball_iff_norm]
|
||||
simp
|
||||
have : { re := x, im := 0 } = (x : ℂ) := by rfl
|
||||
rw [this]
|
||||
rw [Complex.abs_ofReal]
|
||||
constructor
|
||||
· simp
|
||||
linarith
|
||||
· simp
|
||||
exact h₁ε
|
||||
|
||||
have t₂ : ‖∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ ≤ (c / (4 : ℝ)) * |y.im - 0| := by
|
||||
apply intervalIntegral.norm_integral_le_of_norm_le_const
|
||||
|
@ -166,12 +250,10 @@ theorem primitive_fderivAtBasepointZero
|
|||
|
||||
apply le_of_lt
|
||||
apply h₃ε { re := y.re, im := x }
|
||||
simp
|
||||
|
||||
calc Complex.abs { re := y.re, im := x }
|
||||
_ ≤ |y.re| + |x| := by
|
||||
apply Complex.abs_le_abs_re_add_abs_im { re := y.re, im := x }
|
||||
_ < ε := by
|
||||
constructor
|
||||
· simp
|
||||
linarith
|
||||
· simp
|
||||
linarith
|
||||
|
||||
calc ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0) + Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖
|
||||
|
@ -253,14 +335,21 @@ theorem primitive_translation
|
|||
theorem primitive_hasDerivAtBasepoint
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
{f : ℂ → E}
|
||||
{R : ℝ}
|
||||
(z₀ : ℂ)
|
||||
(hf : ContinuousAt f z₀) :
|
||||
(hR : 0 < R)
|
||||
(hf : ContinuousOn f (Metric.ball z₀ R)) :
|
||||
HasDerivAt (primitive z₀ f) (f z₀) z₀ := by
|
||||
|
||||
let g := f ∘ fun z ↦ z + z₀
|
||||
have : Continuous g := by continuity
|
||||
let A := primitive_fderivAtBasepointZero g this
|
||||
simp at A
|
||||
have hg : ContinuousOn g (Metric.ball 0 R) := by
|
||||
apply ContinuousOn.comp
|
||||
fun_prop
|
||||
fun_prop
|
||||
intro x hx
|
||||
simp
|
||||
simp at hx
|
||||
assumption
|
||||
|
||||
let B := primitive_translation g z₀ z₀
|
||||
simp at B
|
||||
|
@ -270,8 +359,7 @@ theorem primitive_hasDerivAtBasepoint
|
|||
simp
|
||||
rw [this] at B
|
||||
rw [B]
|
||||
have : f z₀ = (1 : ℂ) • (f z₀) := by
|
||||
exact (MulAction.one_smul (f z₀)).symm
|
||||
have : f z₀ = (1 : ℂ) • (f z₀) := (MulAction.one_smul (f z₀)).symm
|
||||
conv =>
|
||||
arg 2
|
||||
rw [this]
|
||||
|
@ -280,7 +368,7 @@ theorem primitive_hasDerivAtBasepoint
|
|||
simp
|
||||
have : g 0 = f z₀ := by simp [g]
|
||||
rw [← this]
|
||||
exact A
|
||||
exact primitive_fderivAtBasepointZero hR hg
|
||||
apply HasDerivAt.sub_const
|
||||
have : (fun (x : ℂ) ↦ x) = id := by
|
||||
funext x
|
||||
|
@ -303,10 +391,18 @@ theorem primitive_additivity
|
|||
|
||||
let εx := rx - dist z₀.re z₁.re
|
||||
have hεx : εx > 0 := by
|
||||
sorry
|
||||
let A := hz₁.1
|
||||
simp at A
|
||||
dsimp [εx]
|
||||
rw [dist_comm]
|
||||
simpa
|
||||
let εy := ry - dist z₀.im z₁.im
|
||||
have hεy : εy > 0 := by
|
||||
sorry
|
||||
let A := hz₁.2
|
||||
simp at A
|
||||
dsimp [εy]
|
||||
rw [dist_comm]
|
||||
simpa
|
||||
|
||||
use εx
|
||||
use hεx
|
||||
|
@ -533,7 +629,6 @@ theorem primitive_additivity'
|
|||
rw [← Complex.dist_eq_re_im]; simp
|
||||
exact hz₁
|
||||
obtain ⟨ε, h₁ε, h₂ε⟩ := Metric.isOpen_iff.1 lem₀Ω 0 lem₁Ω
|
||||
have h'₁ε : 0 < ε := by exact h₁ε
|
||||
|
||||
let ε' := (2 : ℝ)⁻¹ * ε
|
||||
|
||||
|
@ -571,20 +666,28 @@ theorem primitive_additivity'
|
|||
simp
|
||||
rw [Complex.dist_eq_re_im]
|
||||
|
||||
have : dist x.re z₀.re < rx := Metric.mem_ball.mp hx.1
|
||||
have : dist x.im z₀.im < ry := Metric.mem_ball.mp hx.2
|
||||
|
||||
have t₀ : √((x.re - z₀.re) ^ 2 + (x.im - z₀.im) ^ 2) < √( rx ^ 2 + ry ^ 2) := by
|
||||
have t₀ : dist x.re z₀.re < rx := Metric.mem_ball.mp hx.1
|
||||
have t₁ : dist x.im z₀.im < ry := Metric.mem_ball.mp hx.2
|
||||
have t₂ : √((x.re - z₀.re) ^ 2 + (x.im - z₀.im) ^ 2) < √( rx ^ 2 + ry ^ 2) := by
|
||||
rw [Real.sqrt_lt_sqrt_iff]
|
||||
apply add_lt_add
|
||||
· dsimp [rx]
|
||||
|
||||
sorry
|
||||
· sorry
|
||||
· rw [sq_lt_sq]
|
||||
dsimp [dist] at t₀
|
||||
nth_rw 2 [abs_of_nonneg]
|
||||
assumption
|
||||
apply add_nonneg dist_nonneg (le_of_lt h₀ε)
|
||||
· rw [sq_lt_sq]
|
||||
dsimp [dist] at t₁
|
||||
nth_rw 2 [abs_of_nonneg]
|
||||
assumption
|
||||
apply add_nonneg dist_nonneg (le_of_lt h₀ε)
|
||||
apply add_nonneg
|
||||
exact sq_nonneg (x.re - z₀.re)
|
||||
exact sq_nonneg (x.im - z₀.im)
|
||||
|
||||
calc √((x.re - z₀.re) ^ 2 + (x.im - z₀.im) ^ 2)
|
||||
_ < √( rx ^ 2 + ry ^ 2) := by
|
||||
exact t₀
|
||||
exact t₂
|
||||
_ = d ε := by dsimp [d, rx, ry]
|
||||
_ < R := by exact h₁ε
|
||||
|
||||
|
@ -625,13 +728,31 @@ theorem primitive_hasDerivAt
|
|||
rw [Filter.EventuallyEq.hasDerivAt_iff A]
|
||||
rw [← add_zero (f z)]
|
||||
apply HasDerivAt.add
|
||||
apply primitive_hasDerivAtBasepoint
|
||||
|
||||
apply hf.continuousOn.continuousAt
|
||||
apply (IsOpen.mem_nhds_iff Metric.isOpen_ball).2 hz
|
||||
let R' := R - dist z z₀
|
||||
have h₀R' : 0 < R' := by
|
||||
dsimp [R']
|
||||
simp
|
||||
exact hz
|
||||
have h₁R' : Metric.ball z R' ⊆ Metric.ball z₀ R := by
|
||||
intro x hx
|
||||
simp
|
||||
calc dist x z₀
|
||||
_ ≤ dist x z + dist z z₀ := dist_triangle x z z₀
|
||||
_ < R' + dist z z₀ := by
|
||||
refine add_lt_add_right ?bc (dist z z₀)
|
||||
exact hx
|
||||
_ = R := by
|
||||
dsimp [R']
|
||||
simp
|
||||
|
||||
apply primitive_hasDerivAtBasepoint
|
||||
exact h₀R'
|
||||
apply ContinuousOn.mono hf.continuousOn h₁R'
|
||||
apply hasDerivAt_const
|
||||
|
||||
|
||||
|
||||
theorem primitive_differentiable
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
{f : ℂ → E}
|
||||
|
|
Loading…
Reference in New Issue