Update holomorphic_primitive2.lean

This commit is contained in:
Stefan Kebekus 2024-08-07 13:11:53 +02:00
parent 656d50e367
commit fc3a4ae3f3

View File

@ -22,6 +22,7 @@ theorem primitive_fderivAtBasepointZero
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
{f : → E}
{R : }
(hR : 0 < R)
(hf : ContinuousOn f (Metric.ball 0 R)) :
HasDerivAt (primitive 0 f) (f 0) 0 := by
unfold primitive
@ -48,6 +49,7 @@ theorem primitive_fderivAtBasepointZero
rw [this]
have {A B C D :E} : (A + B) - (C + D) = (A - C) + (B - D) := by
abel
have t₀ {r : } : IntervalIntegrable (fun x => f { re := x, im := 0 }) MeasureTheory.volume 0 r := by
apply Continuous.intervalIntegrable
apply Continuous.comp
@ -55,6 +57,7 @@ theorem primitive_fderivAtBasepointZero
have : (fun x => ({ re := x, im := 0 } : )) = Complex.ofRealLI := by rfl
rw [this]
continuity
have t₁ {r : } : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 r := by
apply Continuous.intervalIntegrable
apply Continuous.comp
@ -97,11 +100,17 @@ theorem primitive_fderivAtBasepointZero
exact eventually_nhds_iff.mp (continuousAt_def.1 hf (Metric.ball (f 0) (c / (4 : ))) B)
obtain ⟨ε, h₁ε, h₂ε⟩ : ∃ ε > 0, (Metric.ball 0 ε) × (Metric.ball 0 ε) ⊆ s := by
obtain ⟨ε', h₁ε', h₂ε'⟩ : ∃ ε' > 0, Metric.ball 0 ε' ⊆ s := by
obtain ⟨ε', h₁ε', h₂ε'⟩ : ∃ ε' > 0, Metric.ball 0 ε' ⊆ s ∩ Metric.ball 0 R := by
apply Metric.mem_nhds_iff.mp
apply IsOpen.mem_nhds
apply IsOpen.inter
exact h₂s.1
exact h₂s.2
exact Metric.isOpen_ball
constructor
· exact h₂s.2
· simp
sorry
use (2 : )⁻¹ * ε'
constructor
· simpa
@ -280,6 +289,7 @@ theorem primitive_hasDerivAtBasepoint
{f : → E}
{R : }
(z₀ : )
(hR : 0 < R)
(hf : ContinuousOn f (Metric.ball z₀ R)) :
HasDerivAt (primitive z₀ f) (f z₀) z₀ := by
@ -310,7 +320,7 @@ theorem primitive_hasDerivAtBasepoint
simp
have : g 0 = f z₀ := by simp [g]
rw [← this]
exact primitive_fderivAtBasepointZero hg
exact primitive_fderivAtBasepointZero hR hg
apply HasDerivAt.sub_const
have : (fun (x : ) ↦ x) = id := by
funext x
@ -670,13 +680,31 @@ theorem primitive_hasDerivAt
rw [Filter.EventuallyEq.hasDerivAt_iff A]
rw [← add_zero (f z)]
apply HasDerivAt.add
apply primitive_hasDerivAtBasepoint
apply hf.continuousOn.continuousAt
apply (IsOpen.mem_nhds_iff Metric.isOpen_ball).2 hz
let R' := R - dist z z₀
have h₀R' : 0 < R' := by
dsimp [R']
simp
exact hz
have h₁R' : Metric.ball z R' ⊆ Metric.ball z₀ R := by
intro x hx
simp
calc dist x z₀
_ ≤ dist x z + dist z z₀ := dist_triangle x z z₀
_ < R' + dist z z₀ := by
refine add_lt_add_right ?bc (dist z z₀)
exact hx
_ = R := by
dsimp [R']
simp
apply primitive_hasDerivAtBasepoint
exact h₀R'
apply ContinuousOn.mono hf.continuousOn h₁R'
apply hasDerivAt_const
theorem primitive_differentiable
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
{f : → E}