From fc3a4ae3f34e8bfe485929e43951c85bb9fc0a01 Mon Sep 17 00:00:00 2001 From: Stefan Kebekus Date: Wed, 7 Aug 2024 13:11:53 +0200 Subject: [PATCH] Update holomorphic_primitive2.lean --- Nevanlinna/holomorphic_primitive2.lean | 40 ++++++++++++++++++++++---- 1 file changed, 34 insertions(+), 6 deletions(-) diff --git a/Nevanlinna/holomorphic_primitive2.lean b/Nevanlinna/holomorphic_primitive2.lean index a26590d..3447e8a 100644 --- a/Nevanlinna/holomorphic_primitive2.lean +++ b/Nevanlinna/holomorphic_primitive2.lean @@ -22,6 +22,7 @@ theorem primitive_fderivAtBasepointZero {E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E] {f : ℂ → E} {R : ℝ} + (hR : 0 < R) (hf : ContinuousOn f (Metric.ball 0 R)) : HasDerivAt (primitive 0 f) (f 0) 0 := by unfold primitive @@ -48,6 +49,7 @@ theorem primitive_fderivAtBasepointZero rw [this] have {A B C D :E} : (A + B) - (C + D) = (A - C) + (B - D) := by abel + have t₀ {r : ℝ} : IntervalIntegrable (fun x => f { re := x, im := 0 }) MeasureTheory.volume 0 r := by apply Continuous.intervalIntegrable apply Continuous.comp @@ -55,6 +57,7 @@ theorem primitive_fderivAtBasepointZero have : (fun x => ({ re := x, im := 0 } : ℂ)) = Complex.ofRealLI := by rfl rw [this] continuity + have t₁ {r : ℝ} : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 r := by apply Continuous.intervalIntegrable apply Continuous.comp @@ -97,11 +100,17 @@ theorem primitive_fderivAtBasepointZero exact eventually_nhds_iff.mp (continuousAt_def.1 hf (Metric.ball (f 0) (c / (4 : ℝ))) B) obtain ⟨ε, h₁ε, h₂ε⟩ : ∃ ε > 0, (Metric.ball 0 ε) ×ℂ (Metric.ball 0 ε) ⊆ s := by - obtain ⟨ε', h₁ε', h₂ε'⟩ : ∃ ε' > 0, Metric.ball 0 ε' ⊆ s := by + obtain ⟨ε', h₁ε', h₂ε'⟩ : ∃ ε' > 0, Metric.ball 0 ε' ⊆ s ∩ Metric.ball 0 R := by apply Metric.mem_nhds_iff.mp apply IsOpen.mem_nhds + apply IsOpen.inter exact h₂s.1 - exact h₂s.2 + exact Metric.isOpen_ball + constructor + · exact h₂s.2 + · simp + + sorry use (2 : ℝ)⁻¹ * ε' constructor · simpa @@ -280,6 +289,7 @@ theorem primitive_hasDerivAtBasepoint {f : ℂ → E} {R : ℝ} (z₀ : ℂ) + (hR : 0 < R) (hf : ContinuousOn f (Metric.ball z₀ R)) : HasDerivAt (primitive z₀ f) (f z₀) z₀ := by @@ -310,7 +320,7 @@ theorem primitive_hasDerivAtBasepoint simp have : g 0 = f z₀ := by simp [g] rw [← this] - exact primitive_fderivAtBasepointZero hg + exact primitive_fderivAtBasepointZero hR hg apply HasDerivAt.sub_const have : (fun (x : ℂ) ↦ x) = id := by funext x @@ -670,13 +680,31 @@ theorem primitive_hasDerivAt rw [Filter.EventuallyEq.hasDerivAt_iff A] rw [← add_zero (f z)] apply HasDerivAt.add - apply primitive_hasDerivAtBasepoint - apply hf.continuousOn.continuousAt - apply (IsOpen.mem_nhds_iff Metric.isOpen_ball).2 hz + let R' := R - dist z z₀ + have h₀R' : 0 < R' := by + dsimp [R'] + simp + exact hz + have h₁R' : Metric.ball z R' ⊆ Metric.ball z₀ R := by + intro x hx + simp + calc dist x z₀ + _ ≤ dist x z + dist z z₀ := dist_triangle x z z₀ + _ < R' + dist z z₀ := by + refine add_lt_add_right ?bc (dist z z₀) + exact hx + _ = R := by + dsimp [R'] + simp + + apply primitive_hasDerivAtBasepoint + exact h₀R' + apply ContinuousOn.mono hf.continuousOn h₁R' apply hasDerivAt_const + theorem primitive_differentiable {E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E] {f : ℂ → E}