Compare commits
No commits in common. "6a12258093f067e486abcb53e378629d5a2ae946" and "83f9aa5d725edbd84fb73222f021bb131b55a014" have entirely different histories.
6a12258093
...
83f9aa5d72
|
@ -1,6 +1,6 @@
|
|||
import Nevanlinna.complexHarmonic
|
||||
import Nevanlinna.holomorphicAt
|
||||
import Nevanlinna.holomorphic_primitive2
|
||||
import Nevanlinna.holomorphic_primitive
|
||||
import Nevanlinna.mathlibAddOn
|
||||
|
||||
|
||||
|
@ -108,175 +108,131 @@ function.
|
|||
|
||||
theorem harmonic_is_realOfHolomorphic
|
||||
{f : ℂ → ℝ}
|
||||
{z : ℂ}
|
||||
{R : ℝ}
|
||||
(hR : 0 < R)
|
||||
(hf : ∀ x ∈ Metric.ball z R, HarmonicAt f x) :
|
||||
∃ F : ℂ → ℂ, (∀ x ∈ Metric.ball z R, HolomorphicAt F x) ∧ (Set.EqOn (Complex.reCLM ∘ F) f (Metric.ball z R)) := by
|
||||
(hf : ∀ z, HarmonicAt f z) :
|
||||
∃ F : ℂ → ℂ, (∀ z, HolomorphicAt F z) ∧ (Complex.reCLM ∘ F = f) := by
|
||||
|
||||
let f_1 : ℂ → ℂ := Complex.ofRealCLM ∘ (partialDeriv ℝ 1 f)
|
||||
let f_I : ℂ → ℂ := Complex.ofRealCLM ∘ (partialDeriv ℝ Complex.I f)
|
||||
|
||||
let g : ℂ → ℂ := f_1 - Complex.I • f_I
|
||||
|
||||
have contDiffOn_if_contDiffAt
|
||||
{f' : ℂ → ℝ}
|
||||
{z' : ℂ}
|
||||
{R' : ℝ}
|
||||
{n' : ℕ}
|
||||
(hf' : ∀ x ∈ Metric.ball z' R', ContDiffAt ℝ n' f' x) :
|
||||
ContDiffOn ℝ n' f' (Metric.ball z' R') := by
|
||||
intro z hz
|
||||
apply ContDiffAt.contDiffWithinAt
|
||||
exact hf' z hz
|
||||
have reg₂f : ContDiff ℝ 2 f := by
|
||||
apply contDiff_iff_contDiffAt.mpr
|
||||
intro z
|
||||
exact (hf z).1
|
||||
|
||||
have reg₂f : ContDiffOn ℝ 2 f (Metric.ball z R) := by
|
||||
apply contDiffOn_if_contDiffAt
|
||||
intro x hx
|
||||
exact (hf x hx).1
|
||||
|
||||
have contDiffOn_if_contDiffAt'
|
||||
{f' : ℂ → ℂ}
|
||||
{z' : ℂ}
|
||||
{R' : ℝ}
|
||||
{n' : ℕ}
|
||||
(hf' : ∀ x ∈ Metric.ball z' R', ContDiffAt ℝ n' f' x) :
|
||||
ContDiffOn ℝ n' f' (Metric.ball z' R') := by
|
||||
intro z hz
|
||||
apply ContDiffAt.contDiffWithinAt
|
||||
exact hf' z hz
|
||||
|
||||
have reg₁f_1 : ContDiffOn ℝ 1 f_1 (Metric.ball z R) := by
|
||||
apply contDiffOn_if_contDiffAt'
|
||||
intro z hz
|
||||
have reg₁f_1 : ContDiff ℝ 1 f_1 := by
|
||||
apply contDiff_iff_contDiffAt.mpr
|
||||
intro z
|
||||
dsimp [f_1]
|
||||
apply ContDiffAt.continuousLinearMap_comp
|
||||
exact partialDeriv_contDiffAt ℝ (hf z hz).1 1
|
||||
exact partialDeriv_contDiffAt ℝ (hf z).1 1
|
||||
|
||||
have reg₁f_I : ContDiffOn ℝ 1 f_I (Metric.ball z R) := by
|
||||
apply contDiffOn_if_contDiffAt'
|
||||
intro z hz
|
||||
have reg₁f_I : ContDiff ℝ 1 f_I := by
|
||||
apply contDiff_iff_contDiffAt.mpr
|
||||
intro z
|
||||
dsimp [f_I]
|
||||
apply ContDiffAt.continuousLinearMap_comp
|
||||
exact partialDeriv_contDiffAt ℝ (hf z hz).1 Complex.I
|
||||
exact partialDeriv_contDiffAt ℝ (hf z).1 Complex.I
|
||||
|
||||
have reg₁g : ContDiffOn ℝ 1 g (Metric.ball z R) := by
|
||||
have reg₁g : ContDiff ℝ 1 g := by
|
||||
dsimp [g]
|
||||
apply ContDiffOn.sub
|
||||
apply ContDiff.sub
|
||||
exact reg₁f_1
|
||||
have : Complex.I • f_I = fun x ↦ Complex.I • f_I x := by rfl
|
||||
rw [this]
|
||||
apply ContDiffOn.const_smul
|
||||
apply ContDiff.const_smul'
|
||||
exact reg₁f_I
|
||||
|
||||
have reg₁ : DifferentiableOn ℂ g (Metric.ball z R) := by
|
||||
intro x hx
|
||||
apply DifferentiableAt.differentiableWithinAt
|
||||
have reg₁ : Differentiable ℂ g := by
|
||||
intro z
|
||||
apply CauchyRiemann₇.2
|
||||
constructor
|
||||
· apply DifferentiableWithinAt.differentiableAt (reg₁g.differentiableOn le_rfl x hx)
|
||||
apply IsOpen.mem_nhds Metric.isOpen_ball hx
|
||||
· apply Differentiable.differentiableAt
|
||||
apply ContDiff.differentiable
|
||||
exact reg₁g
|
||||
rfl
|
||||
· dsimp [g]
|
||||
rw [partialDeriv_sub₂_differentiableAt, partialDeriv_sub₂_differentiableAt]
|
||||
rw [partialDeriv_sub₂, partialDeriv_sub₂]
|
||||
simp
|
||||
dsimp [f_1, f_I]
|
||||
rw [partialDeriv_smul'₂, partialDeriv_smul'₂]
|
||||
rw [partialDeriv_compContLinAt, partialDeriv_compContLinAt]
|
||||
simp
|
||||
rw [partialDeriv_compContLinAt, partialDeriv_compContLinAt]
|
||||
rw [partialDeriv_compContLin, partialDeriv_compContLin, partialDeriv_compContLin, partialDeriv_compContLin]
|
||||
rw [mul_sub]
|
||||
simp
|
||||
rw [← mul_assoc]
|
||||
simp
|
||||
rw [add_comm, sub_eq_add_neg]
|
||||
congr 1
|
||||
· rw [partialDeriv_commOn _ reg₂f Complex.I 1]
|
||||
exact hx
|
||||
exact Metric.isOpen_ball
|
||||
· let A := Filter.EventuallyEq.eq_of_nhds (hf x hx).2
|
||||
· rw [partialDeriv_comm reg₂f Complex.I 1]
|
||||
· let A := Filter.EventuallyEq.eq_of_nhds (hf z).2
|
||||
simp at A
|
||||
unfold Complex.laplace at A
|
||||
conv =>
|
||||
right
|
||||
right
|
||||
rw [← sub_zero (partialDeriv ℝ 1 (partialDeriv ℝ 1 f) x)]
|
||||
rw [← sub_zero (partialDeriv ℝ 1 (partialDeriv ℝ 1 f) z)]
|
||||
rw [← A]
|
||||
simp
|
||||
|
||||
--DifferentiableAt ℝ (partialDeriv ℝ _ f)
|
||||
--Differentiable ℝ (partialDeriv ℝ _ f)
|
||||
repeat
|
||||
apply ContDiffAt.differentiableAt
|
||||
apply partialDeriv_contDiffAt ℝ (hf x hx).1
|
||||
apply ContDiff.differentiable
|
||||
apply contDiff_iff_contDiffAt.mpr
|
||||
exact fun w ↦ partialDeriv_contDiffAt ℝ (hf w).1 _
|
||||
apply le_rfl
|
||||
|
||||
-- DifferentiableAt ℝ f_1 x
|
||||
apply (reg₁f_1.differentiableOn le_rfl).differentiableAt
|
||||
apply IsOpen.mem_nhds Metric.isOpen_ball hx
|
||||
|
||||
-- DifferentiableAt ℝ (Complex.I • f_I)
|
||||
have : Complex.I • f_I = fun x ↦ Complex.I • f_I x := by rfl
|
||||
rw [this]
|
||||
apply DifferentiableAt.const_smul
|
||||
apply (reg₁f_I.differentiableOn le_rfl).differentiableAt
|
||||
apply IsOpen.mem_nhds Metric.isOpen_ball hx
|
||||
|
||||
-- Differentiable ℝ f_1
|
||||
apply (reg₁f_1.differentiableOn le_rfl).differentiableAt
|
||||
apply IsOpen.mem_nhds Metric.isOpen_ball hx
|
||||
|
||||
exact reg₁f_1.differentiable le_rfl
|
||||
-- Differentiable ℝ (Complex.I • f_I)
|
||||
have : Complex.I • f_I = fun x ↦ Complex.I • f_I x := by rfl
|
||||
rw [this]
|
||||
apply DifferentiableAt.const_smul
|
||||
apply (reg₁f_I.differentiableOn le_rfl).differentiableAt
|
||||
apply IsOpen.mem_nhds Metric.isOpen_ball hx
|
||||
apply Differentiable.const_smul'
|
||||
exact reg₁f_I.differentiable le_rfl
|
||||
-- Differentiable ℝ f_1
|
||||
exact reg₁f_1.differentiable le_rfl
|
||||
-- Differentiable ℝ (Complex.I • f_I)
|
||||
apply Differentiable.const_smul'
|
||||
exact reg₁f_I.differentiable le_rfl
|
||||
|
||||
let F := fun z' ↦ (primitive z g) z' + f z
|
||||
let F := fun z ↦ (primitive 0 g) z + f 0
|
||||
|
||||
have regF : DifferentiableOn ℂ F (Metric.ball z R) := by
|
||||
apply DifferentiableOn.add
|
||||
apply primitive_differentiableOn reg₁
|
||||
have regF : Differentiable ℂ F := by
|
||||
apply Differentiable.add
|
||||
apply primitive_differentiable reg₁
|
||||
simp
|
||||
|
||||
have pF'' : ∀ x ∈ Metric.ball z R, (fderiv ℝ F x) = ContinuousLinearMap.lsmul ℝ ℂ (g x) := by
|
||||
intro x hx
|
||||
have : DifferentiableAt ℂ F x := by
|
||||
apply (regF x hx).differentiableAt
|
||||
apply IsOpen.mem_nhds Metric.isOpen_ball hx
|
||||
rw [DifferentiableAt.fderiv_restrictScalars ℝ this]
|
||||
have pF'' : ∀ x, (fderiv ℝ F x) = ContinuousLinearMap.lsmul ℝ ℂ (g x) := by
|
||||
intro x
|
||||
rw [DifferentiableAt.fderiv_restrictScalars ℝ (regF x)]
|
||||
dsimp [F]
|
||||
rw [fderiv_add_const]
|
||||
rw [primitive_fderiv' reg₁ x hx]
|
||||
rw [primitive_fderiv']
|
||||
exact rfl
|
||||
exact reg₁
|
||||
|
||||
use F
|
||||
|
||||
constructor
|
||||
· -- ∀ x ∈ Metric.ball z R, HolomorphicAt F x
|
||||
intro x hx
|
||||
· -- ∀ (z : ℂ), HolomorphicAt F z
|
||||
intro z
|
||||
apply HolomorphicAt_iff.2
|
||||
use Metric.ball z R
|
||||
use Set.univ
|
||||
constructor
|
||||
· exact Metric.isOpen_ball
|
||||
· exact isOpen_const
|
||||
· constructor
|
||||
· assumption
|
||||
· intro w hw
|
||||
apply (regF w hw).differentiableAt
|
||||
apply IsOpen.mem_nhds Metric.isOpen_ball hw
|
||||
· -- Set.EqOn (⇑Complex.reCLM ∘ F) f (Metric.ball z R)
|
||||
have : DifferentiableOn ℝ (Complex.reCLM ∘ F) (Metric.ball z R) := by
|
||||
apply DifferentiableOn.comp
|
||||
apply Differentiable.differentiableOn
|
||||
apply ContinuousLinearMap.differentiable Complex.reCLM
|
||||
apply regF.restrictScalars ℝ
|
||||
exact Set.mapsTo'.mpr fun ⦃a⦄ _ => hR
|
||||
have hz : z ∈ Metric.ball z R := by exact Metric.mem_ball_self hR
|
||||
apply Convex.eqOn_of_fderivWithin_eq _ this _ _ _ hz _
|
||||
exact convex_ball z R
|
||||
apply reg₂f.differentiableOn one_le_two
|
||||
apply IsOpen.uniqueDiffOn Metric.isOpen_ball
|
||||
· simp
|
||||
· intro w _
|
||||
exact regF w
|
||||
· -- (F z).re = f z
|
||||
have A := reg₂f.differentiable one_le_two
|
||||
have B : Differentiable ℝ (Complex.reCLM ∘ F) := by
|
||||
apply Differentiable.comp
|
||||
exact ContinuousLinearMap.differentiable Complex.reCLM
|
||||
exact Differentiable.restrictScalars ℝ regF
|
||||
have C : (F 0).re = f 0 := by
|
||||
dsimp [F]
|
||||
rw [primitive_zeroAtBasepoint]
|
||||
simp
|
||||
|
||||
intro x hx
|
||||
rw [fderivWithin_eq_fderiv, fderivWithin_eq_fderiv]
|
||||
apply eq_of_fderiv_eq B A _ 0 C
|
||||
|
||||
intro x
|
||||
rw [fderiv.comp]
|
||||
simp
|
||||
apply ContinuousLinearMap.ext
|
||||
|
@ -291,24 +247,7 @@ theorem harmonic_is_realOfHolomorphic
|
|||
rw [(fderiv ℝ f x).map_smul, (fderiv ℝ f x).map_smul]
|
||||
rw [smul_eq_mul, smul_eq_mul]
|
||||
ring
|
||||
|
||||
assumption
|
||||
exact ContinuousLinearMap.differentiableAt Complex.reCLM
|
||||
apply (regF.restrictScalars ℝ x hx).differentiableAt
|
||||
apply IsOpen.mem_nhds Metric.isOpen_ball hx
|
||||
apply IsOpen.uniqueDiffOn Metric.isOpen_ball
|
||||
assumption
|
||||
apply (reg₂f.differentiableOn one_le_two).differentiableAt
|
||||
apply IsOpen.mem_nhds Metric.isOpen_ball hx
|
||||
apply IsOpen.uniqueDiffOn Metric.isOpen_ball
|
||||
assumption
|
||||
-- DifferentiableAt ℝ (⇑Complex.reCLM ∘ F) x
|
||||
apply DifferentiableAt.comp
|
||||
apply Differentiable.differentiableAt
|
||||
exact ContinuousLinearMap.differentiable Complex.reCLM
|
||||
apply (regF.restrictScalars ℝ x hx).differentiableAt
|
||||
apply IsOpen.mem_nhds Metric.isOpen_ball hx
|
||||
--
|
||||
dsimp [F]
|
||||
rw [primitive_zeroAtBasepoint]
|
||||
simp
|
||||
-- DifferentiableAt ℝ (⇑Complex.reCLM) (F x)
|
||||
fun_prop
|
||||
-- DifferentiableAt ℝ F x
|
||||
exact regF.restrictScalars ℝ x
|
||||
|
|
|
@ -49,6 +49,9 @@ theorem primitive_fderivAtBasepointZero
|
|||
rw [this]
|
||||
|
||||
obtain ⟨s, h₁s, h₂s⟩ : ∃ s ⊆ f⁻¹' Metric.ball (f 0) (c / (4 : ℝ)), IsOpen s ∧ 0 ∈ s := by
|
||||
have B : Metric.ball (f 0) (c / 4) ∈ nhds (f 0) := by
|
||||
apply Metric.ball_mem_nhds (f 0)
|
||||
linarith
|
||||
apply eventually_nhds_iff.mp
|
||||
apply continuousAt_def.1
|
||||
apply Continuous.continuousAt
|
||||
|
@ -121,37 +124,7 @@ theorem primitive_fderivAtBasepointZero
|
|||
apply h₁s
|
||||
exact h₂ε.1 hy
|
||||
|
||||
|
||||
have intervalComputation_uIcc {x' y' : ℝ} (h : x' ∈ Set.uIcc 0 y') : |x'| ≤ |y'| := by
|
||||
let A := h.1
|
||||
let B := h.2
|
||||
rcases le_total 0 y' with hy | hy
|
||||
· simp [hy] at A
|
||||
simp [hy] at B
|
||||
rwa [abs_of_nonneg A, abs_of_nonneg hy]
|
||||
· simp [hy] at A
|
||||
simp [hy] at B
|
||||
rw [abs_of_nonpos hy]
|
||||
rw [abs_of_nonpos]
|
||||
linarith [h.1]
|
||||
exact B
|
||||
|
||||
|
||||
rw [Filter.eventually_iff_exists_mem]
|
||||
use Metric.ball 0 (ε / (4 : ℝ))
|
||||
|
||||
constructor
|
||||
· apply Metric.ball_mem_nhds 0
|
||||
linarith
|
||||
· intro y hy
|
||||
|
||||
have {A B C D :E} : (A + B) - (C + D) = (A - C) + (B - D) := by
|
||||
abel
|
||||
rw [this]
|
||||
rw [← smul_sub]
|
||||
|
||||
|
||||
have t₀ : IntervalIntegrable (fun x => f { re := x, im := 0 }) MeasureTheory.volume 0 y.re := by
|
||||
have t₀ {r : ℝ} (hr : r ∈ Metric.ball 0 ε) : IntervalIntegrable (fun x => f { re := x, im := 0 }) MeasureTheory.volume 0 r := by
|
||||
apply ContinuousOn.intervalIntegrable
|
||||
apply ContinuousOn.comp
|
||||
exact hf
|
||||
|
@ -165,62 +138,60 @@ theorem primitive_fderivAtBasepointZero
|
|||
constructor
|
||||
· simp
|
||||
calc |x|
|
||||
_ ≤ |y.re| := by apply intervalComputation_uIcc hx
|
||||
_ ≤ Complex.abs y := by exact Complex.abs_re_le_abs y
|
||||
_ < ε / 4 := by simp at hy; assumption
|
||||
_ < ε := by linarith
|
||||
_ < ε := by
|
||||
sorry
|
||||
· simpa
|
||||
have t₁ : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 y.re := by
|
||||
|
||||
have t₁ {r : ℝ} (hr : r ∈ Metric.ball 0 ε) : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 r := by
|
||||
apply ContinuousOn.intervalIntegrable
|
||||
apply ContinuousOn.comp
|
||||
apply hf
|
||||
fun_prop
|
||||
intro x _
|
||||
intro x hx
|
||||
simpa
|
||||
rw [← intervalIntegral.integral_sub t₀ t₁]
|
||||
|
||||
have t₂ : IntervalIntegrable (fun x_1 => f { re := y.re, im := x_1 }) MeasureTheory.volume 0 y.im := by
|
||||
apply ContinuousOn.intervalIntegrable
|
||||
apply ContinuousOn.comp
|
||||
exact hf
|
||||
have : (Complex.mk y.re) = (fun x => Complex.I • Complex.ofRealCLM x + { re := y.re, im := 0 }) := by
|
||||
|
||||
have t₂ {a b : ℝ} : IntervalIntegrable (fun x_1 => f { re := a, im := x_1 }) MeasureTheory.volume 0 b := by
|
||||
apply Continuous.intervalIntegrable
|
||||
apply Continuous.comp hf
|
||||
have : (Complex.mk a) = (fun x => Complex.I • Complex.ofRealCLM x + { re := a, im := 0 }) := by
|
||||
funext x
|
||||
apply Complex.ext
|
||||
rw [Complex.add_re]
|
||||
simp
|
||||
simp
|
||||
rw [this]
|
||||
apply ContinuousOn.add
|
||||
apply Continuous.continuousOn
|
||||
apply Continuous.add
|
||||
continuity
|
||||
fun_prop
|
||||
intro x hx
|
||||
apply h₂ε.2
|
||||
constructor
|
||||
· simp
|
||||
calc |y.re|
|
||||
_ ≤ Complex.abs y := by exact Complex.abs_re_le_abs y
|
||||
_ < ε / 4 := by simp at hy; assumption
|
||||
_ < ε := by linarith
|
||||
· simp
|
||||
calc |x|
|
||||
_ ≤ |y.im| := by apply intervalComputation_uIcc hx
|
||||
_ ≤ Complex.abs y := by exact Complex.abs_im_le_abs y
|
||||
_ < ε / 4 := by simp at hy; assumption
|
||||
_ < ε := by linarith
|
||||
have t₃ : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 y.im := by
|
||||
apply ContinuousOn.intervalIntegrable
|
||||
apply ContinuousOn.comp
|
||||
|
||||
have t₃ {a : ℝ} : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 a := by
|
||||
apply Continuous.intervalIntegrable
|
||||
apply Continuous.comp
|
||||
exact hf
|
||||
fun_prop
|
||||
intro x _
|
||||
apply h₂ε.2
|
||||
simp
|
||||
constructor
|
||||
· simpa
|
||||
· simpa
|
||||
|
||||
have {A B C D :E} : (A + B) - (C + D) = (A - C) + (B - D) := by
|
||||
abel
|
||||
conv =>
|
||||
left
|
||||
intro x
|
||||
left
|
||||
arg 1
|
||||
rw [this]
|
||||
rw [← smul_sub]
|
||||
|
||||
rw [← intervalIntegral.integral_sub t₀ t₁]
|
||||
rw [← intervalIntegral.integral_sub t₂ t₃]
|
||||
|
||||
rw [Filter.eventually_iff_exists_mem]
|
||||
|
||||
|
||||
use Metric.ball 0 (ε / (4 : ℝ))
|
||||
constructor
|
||||
· apply Metric.ball_mem_nhds 0
|
||||
linarith
|
||||
· intro y hy
|
||||
have h₁y : |y.re| < ε / 4 := by
|
||||
calc |y.re|
|
||||
_ ≤ Complex.abs y := by apply Complex.abs_re_le_abs
|
||||
|
@ -781,11 +752,12 @@ theorem primitive_hasDerivAt
|
|||
apply hasDerivAt_const
|
||||
|
||||
|
||||
theorem primitive_differentiableOn
|
||||
|
||||
theorem primitive_differentiable
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
{f : ℂ → E}
|
||||
{z₀ : ℂ}
|
||||
{R : ℝ}
|
||||
(z₀ : ℂ)
|
||||
(R : ℝ)
|
||||
(hf : DifferentiableOn ℂ f (Metric.ball z₀ R))
|
||||
:
|
||||
DifferentiableOn ℂ (primitive z₀ f) (Metric.ball z₀ R) := by
|
||||
|
|
|
@ -102,6 +102,20 @@ theorem partialDeriv_add₂ {f₁ f₂ : E → F} (h₁ : Differentiable 𝕜 f
|
|||
simp
|
||||
|
||||
|
||||
theorem partialDeriv_sub₂ {f₁ f₂ : E → F} (h₁ : Differentiable 𝕜 f₁) (h₂ : Differentiable 𝕜 f₂) : ∀ v : E, partialDeriv 𝕜 v (f₁ - f₂) = (partialDeriv 𝕜 v f₁) - (partialDeriv 𝕜 v f₂) := by
|
||||
unfold partialDeriv
|
||||
intro v
|
||||
have : f₁ - f₂ = fun y ↦ f₁ y - f₂ y := by rfl
|
||||
rw [this]
|
||||
conv =>
|
||||
left
|
||||
intro w
|
||||
left
|
||||
rw [fderiv_sub (h₁ w) (h₂ w)]
|
||||
funext w
|
||||
simp
|
||||
|
||||
|
||||
theorem partialDeriv_add₂_differentiableAt
|
||||
{f₁ f₂ : E → F}
|
||||
{v : E}
|
||||
|
@ -139,57 +153,6 @@ theorem partialDeriv_add₂_contDiffAt
|
|||
exact (hf₂' x (Set.mem_of_mem_inter_right hx)).differentiableAt
|
||||
|
||||
|
||||
theorem partialDeriv_sub₂ {f₁ f₂ : E → F} (h₁ : Differentiable 𝕜 f₁) (h₂ : Differentiable 𝕜 f₂) : ∀ v : E, partialDeriv 𝕜 v (f₁ - f₂) = (partialDeriv 𝕜 v f₁) - (partialDeriv 𝕜 v f₂) := by
|
||||
unfold partialDeriv
|
||||
intro v
|
||||
have : f₁ - f₂ = fun y ↦ f₁ y - f₂ y := by rfl
|
||||
rw [this]
|
||||
conv =>
|
||||
left
|
||||
intro w
|
||||
left
|
||||
rw [fderiv_sub (h₁ w) (h₂ w)]
|
||||
funext w
|
||||
simp
|
||||
|
||||
|
||||
theorem partialDeriv_sub₂_differentiableAt
|
||||
{f₁ f₂ : E → F}
|
||||
{v : E}
|
||||
{x : E}
|
||||
(h₁ : DifferentiableAt 𝕜 f₁ x)
|
||||
(h₂ : DifferentiableAt 𝕜 f₂ x) :
|
||||
partialDeriv 𝕜 v (f₁ - f₂) x = (partialDeriv 𝕜 v f₁) x - (partialDeriv 𝕜 v f₂) x := by
|
||||
|
||||
unfold partialDeriv
|
||||
have : f₁ - f₂ = fun y ↦ f₁ y - f₂ y := by rfl
|
||||
rw [this]
|
||||
rw [fderiv_sub h₁ h₂]
|
||||
rfl
|
||||
|
||||
|
||||
theorem partialDeriv_sub₂_contDiffAt
|
||||
{f₁ f₂ : E → F}
|
||||
{v : E}
|
||||
{x : E}
|
||||
(h₁ : ContDiffAt 𝕜 1 f₁ x)
|
||||
(h₂ : ContDiffAt 𝕜 1 f₂ x) :
|
||||
partialDeriv 𝕜 v (f₁ - f₂) =ᶠ[nhds x] (partialDeriv 𝕜 v f₁) - (partialDeriv 𝕜 v f₂) := by
|
||||
|
||||
obtain ⟨f₁', u₁, hu₁, _, hf₁'⟩ := contDiffAt_one_iff.1 h₁
|
||||
obtain ⟨f₂', u₂, hu₂, _, hf₂'⟩ := contDiffAt_one_iff.1 h₂
|
||||
|
||||
apply Filter.eventuallyEq_iff_exists_mem.2
|
||||
use u₁ ∩ u₂
|
||||
constructor
|
||||
· exact Filter.inter_mem hu₁ hu₂
|
||||
· intro x hx
|
||||
simp
|
||||
apply partialDeriv_sub₂_differentiableAt 𝕜
|
||||
exact (hf₁' x (Set.mem_of_mem_inter_left hx)).differentiableAt
|
||||
exact (hf₂' x (Set.mem_of_mem_inter_right hx)).differentiableAt
|
||||
|
||||
|
||||
theorem partialDeriv_compContLin
|
||||
{f : E → F}
|
||||
{l : F →L[𝕜] G}
|
||||
|
|
Loading…
Reference in New Issue