working
This commit is contained in:
parent
167db4310c
commit
eb4c9da6b5
|
@ -0,0 +1,108 @@
|
||||||
|
import Nevanlinna.harmonicAt_examples
|
||||||
|
import Nevanlinna.harmonicAt_meanValue
|
||||||
|
|
||||||
|
|
||||||
|
theorem jensen_case_R_eq_one
|
||||||
|
(f : ℂ → ℂ)
|
||||||
|
(h₁f : Differentiable ℂ f)
|
||||||
|
(h₂f : f 0 ≠ 0)
|
||||||
|
(S : Finset ℕ)
|
||||||
|
(a : S → ℂ)
|
||||||
|
(ha : ∀ s, a s ∈ Metric.ball 0 1)
|
||||||
|
(F : ℂ → ℂ)
|
||||||
|
(h₁F : Differentiable ℂ F)
|
||||||
|
(h₂F : ∀ z, F z ≠ 0)
|
||||||
|
(h₃F : f = fun z ↦ (F z) * ∑ s : S, (z - a s))
|
||||||
|
:
|
||||||
|
Real.log ‖f 0‖ = -∑ s, Real.log (‖a s‖⁻¹) + (2 * Real.pi)⁻¹ * ∫ (x : ℝ) in (0)..2 * Real.pi, Real.log ‖f (circleMap 0 1 x)‖ := by
|
||||||
|
|
||||||
|
let logAbsF := fun w ↦ Real.log ‖F w‖
|
||||||
|
|
||||||
|
have t₀ : ∀ z, HarmonicAt logAbsF z := by
|
||||||
|
intro z
|
||||||
|
apply logabs_of_holomorphicAt_is_harmonic
|
||||||
|
sorry
|
||||||
|
exact h₂F z
|
||||||
|
|
||||||
|
have t₁ : (∫ (x : ℝ) in (0)..2 * Real.pi, logAbsF (circleMap 0 1 x)) = 2 * Real.pi * logAbsF 0 := by
|
||||||
|
apply harmonic_meanValue t₀ 1
|
||||||
|
exact Real.zero_lt_one
|
||||||
|
|
||||||
|
let logAbsf := fun w ↦ Real.log ‖f w‖
|
||||||
|
have s₀ : ∀ z, f z ≠ 0 → logAbsf z = logAbsF z + ∑ s, Real.log ‖z - a s‖ := by
|
||||||
|
sorry
|
||||||
|
have s₁ : ∀ z, f z ≠ 0 → logAbsF z = logAbsf z - ∑ s, Real.log ‖z - a s‖ := by
|
||||||
|
sorry
|
||||||
|
|
||||||
|
rw [s₁ 0 h₂f] at t₁
|
||||||
|
|
||||||
|
have {x : ℝ} : f (circleMap 0 1 x) ≠ 0 := by sorry
|
||||||
|
simp_rw [s₁ (circleMap 0 1 _) this] at t₁
|
||||||
|
rw [intervalIntegral.integral_sub] at t₁
|
||||||
|
rw [intervalIntegral.integral_finset_sum] at t₁
|
||||||
|
|
||||||
|
have {i : S} : ∫ (x : ℝ) in (0)..2 * Real.pi, Real.log ‖circleMap 0 1 x - a i‖ = 0 := by
|
||||||
|
|
||||||
|
sorry
|
||||||
|
simp_rw [this] at t₁
|
||||||
|
simp at t₁
|
||||||
|
rw [t₁]
|
||||||
|
simp
|
||||||
|
have : Real.pi⁻¹ * 2⁻¹ * (2 * Real.pi * (logAbsf 0 - ∑ x ∈ S.attach, Real.log (Complex.abs (a x)))) = logAbsf 0 - ∑ x ∈ S.attach, Real.log (Complex.abs (a x)) := by
|
||||||
|
sorry
|
||||||
|
rw [this]
|
||||||
|
simp
|
||||||
|
rfl
|
||||||
|
-- ∀ i ∈ Finset.univ, IntervalIntegrable (fun x => Real.log ‖circleMap 0 1 x - a i‖) MeasureTheory.volume 0 (2 * Real.pi)
|
||||||
|
intro i hi
|
||||||
|
apply Continuous.intervalIntegrable
|
||||||
|
apply continuous_iff_continuousAt.2
|
||||||
|
intro x
|
||||||
|
have : (fun x => Real.log ‖circleMap 0 1 x - a i‖) = Real.log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - a i) :=
|
||||||
|
rfl
|
||||||
|
rw [this]
|
||||||
|
apply ContinuousAt.comp
|
||||||
|
apply Real.continuousAt_log
|
||||||
|
simp
|
||||||
|
by_contra ha'
|
||||||
|
let A := ha i
|
||||||
|
rw [← ha'] at A
|
||||||
|
simp at A
|
||||||
|
apply ContinuousAt.comp
|
||||||
|
apply Complex.continuous_abs.continuousAt
|
||||||
|
fun_prop
|
||||||
|
-- IntervalIntegrable (fun x => logAbsf (circleMap 0 1 x)) MeasureTheory.volume 0 (2 * Real.pi)
|
||||||
|
apply Continuous.intervalIntegrable
|
||||||
|
apply continuous_iff_continuousAt.2
|
||||||
|
intro x
|
||||||
|
have : (fun x => logAbsf (circleMap 0 1 x)) = Real.log ∘ Complex.abs ∘ f ∘ (fun x ↦ circleMap 0 1 x) :=
|
||||||
|
rfl
|
||||||
|
rw [this]
|
||||||
|
apply ContinuousAt.comp
|
||||||
|
simp
|
||||||
|
sorry
|
||||||
|
apply ContinuousAt.comp
|
||||||
|
apply Complex.continuous_abs.continuousAt
|
||||||
|
apply ContinuousAt.comp
|
||||||
|
apply h₁f.continuous.continuousAt
|
||||||
|
let A := continuous_circleMap 0 1
|
||||||
|
apply A.continuousAt
|
||||||
|
-- IntervalIntegrable (fun x => ∑ s : { x // x ∈ S }, Real.log ‖circleMap 0 1 x - a s‖) MeasureTheory.volume 0 (2 * Real.pi)
|
||||||
|
apply Continuous.intervalIntegrable
|
||||||
|
apply continuous_finset_sum
|
||||||
|
intro i hi
|
||||||
|
apply continuous_iff_continuousAt.2
|
||||||
|
intro x
|
||||||
|
have : (fun x => Real.log ‖circleMap 0 1 x - a i‖) = Real.log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - a i) :=
|
||||||
|
rfl
|
||||||
|
rw [this]
|
||||||
|
apply ContinuousAt.comp
|
||||||
|
apply Real.continuousAt_log
|
||||||
|
simp
|
||||||
|
by_contra ha'
|
||||||
|
let A := ha i
|
||||||
|
rw [← ha'] at A
|
||||||
|
simp at A
|
||||||
|
apply ContinuousAt.comp
|
||||||
|
apply Complex.continuous_abs.continuousAt
|
||||||
|
fun_prop
|
Loading…
Reference in New Issue