working
This commit is contained in:
parent
167db4310c
commit
eb4c9da6b5
108
Nevanlinna/holomorphic_JensenFormula.lean
Normal file
108
Nevanlinna/holomorphic_JensenFormula.lean
Normal file
@ -0,0 +1,108 @@
|
||||
import Nevanlinna.harmonicAt_examples
|
||||
import Nevanlinna.harmonicAt_meanValue
|
||||
|
||||
|
||||
theorem jensen_case_R_eq_one
|
||||
(f : ℂ → ℂ)
|
||||
(h₁f : Differentiable ℂ f)
|
||||
(h₂f : f 0 ≠ 0)
|
||||
(S : Finset ℕ)
|
||||
(a : S → ℂ)
|
||||
(ha : ∀ s, a s ∈ Metric.ball 0 1)
|
||||
(F : ℂ → ℂ)
|
||||
(h₁F : Differentiable ℂ F)
|
||||
(h₂F : ∀ z, F z ≠ 0)
|
||||
(h₃F : f = fun z ↦ (F z) * ∑ s : S, (z - a s))
|
||||
:
|
||||
Real.log ‖f 0‖ = -∑ s, Real.log (‖a s‖⁻¹) + (2 * Real.pi)⁻¹ * ∫ (x : ℝ) in (0)..2 * Real.pi, Real.log ‖f (circleMap 0 1 x)‖ := by
|
||||
|
||||
let logAbsF := fun w ↦ Real.log ‖F w‖
|
||||
|
||||
have t₀ : ∀ z, HarmonicAt logAbsF z := by
|
||||
intro z
|
||||
apply logabs_of_holomorphicAt_is_harmonic
|
||||
sorry
|
||||
exact h₂F z
|
||||
|
||||
have t₁ : (∫ (x : ℝ) in (0)..2 * Real.pi, logAbsF (circleMap 0 1 x)) = 2 * Real.pi * logAbsF 0 := by
|
||||
apply harmonic_meanValue t₀ 1
|
||||
exact Real.zero_lt_one
|
||||
|
||||
let logAbsf := fun w ↦ Real.log ‖f w‖
|
||||
have s₀ : ∀ z, f z ≠ 0 → logAbsf z = logAbsF z + ∑ s, Real.log ‖z - a s‖ := by
|
||||
sorry
|
||||
have s₁ : ∀ z, f z ≠ 0 → logAbsF z = logAbsf z - ∑ s, Real.log ‖z - a s‖ := by
|
||||
sorry
|
||||
|
||||
rw [s₁ 0 h₂f] at t₁
|
||||
|
||||
have {x : ℝ} : f (circleMap 0 1 x) ≠ 0 := by sorry
|
||||
simp_rw [s₁ (circleMap 0 1 _) this] at t₁
|
||||
rw [intervalIntegral.integral_sub] at t₁
|
||||
rw [intervalIntegral.integral_finset_sum] at t₁
|
||||
|
||||
have {i : S} : ∫ (x : ℝ) in (0)..2 * Real.pi, Real.log ‖circleMap 0 1 x - a i‖ = 0 := by
|
||||
|
||||
sorry
|
||||
simp_rw [this] at t₁
|
||||
simp at t₁
|
||||
rw [t₁]
|
||||
simp
|
||||
have : Real.pi⁻¹ * 2⁻¹ * (2 * Real.pi * (logAbsf 0 - ∑ x ∈ S.attach, Real.log (Complex.abs (a x)))) = logAbsf 0 - ∑ x ∈ S.attach, Real.log (Complex.abs (a x)) := by
|
||||
sorry
|
||||
rw [this]
|
||||
simp
|
||||
rfl
|
||||
-- ∀ i ∈ Finset.univ, IntervalIntegrable (fun x => Real.log ‖circleMap 0 1 x - a i‖) MeasureTheory.volume 0 (2 * Real.pi)
|
||||
intro i hi
|
||||
apply Continuous.intervalIntegrable
|
||||
apply continuous_iff_continuousAt.2
|
||||
intro x
|
||||
have : (fun x => Real.log ‖circleMap 0 1 x - a i‖) = Real.log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - a i) :=
|
||||
rfl
|
||||
rw [this]
|
||||
apply ContinuousAt.comp
|
||||
apply Real.continuousAt_log
|
||||
simp
|
||||
by_contra ha'
|
||||
let A := ha i
|
||||
rw [← ha'] at A
|
||||
simp at A
|
||||
apply ContinuousAt.comp
|
||||
apply Complex.continuous_abs.continuousAt
|
||||
fun_prop
|
||||
-- IntervalIntegrable (fun x => logAbsf (circleMap 0 1 x)) MeasureTheory.volume 0 (2 * Real.pi)
|
||||
apply Continuous.intervalIntegrable
|
||||
apply continuous_iff_continuousAt.2
|
||||
intro x
|
||||
have : (fun x => logAbsf (circleMap 0 1 x)) = Real.log ∘ Complex.abs ∘ f ∘ (fun x ↦ circleMap 0 1 x) :=
|
||||
rfl
|
||||
rw [this]
|
||||
apply ContinuousAt.comp
|
||||
simp
|
||||
sorry
|
||||
apply ContinuousAt.comp
|
||||
apply Complex.continuous_abs.continuousAt
|
||||
apply ContinuousAt.comp
|
||||
apply h₁f.continuous.continuousAt
|
||||
let A := continuous_circleMap 0 1
|
||||
apply A.continuousAt
|
||||
-- IntervalIntegrable (fun x => ∑ s : { x // x ∈ S }, Real.log ‖circleMap 0 1 x - a s‖) MeasureTheory.volume 0 (2 * Real.pi)
|
||||
apply Continuous.intervalIntegrable
|
||||
apply continuous_finset_sum
|
||||
intro i hi
|
||||
apply continuous_iff_continuousAt.2
|
||||
intro x
|
||||
have : (fun x => Real.log ‖circleMap 0 1 x - a i‖) = Real.log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - a i) :=
|
||||
rfl
|
||||
rw [this]
|
||||
apply ContinuousAt.comp
|
||||
apply Real.continuousAt_log
|
||||
simp
|
||||
by_contra ha'
|
||||
let A := ha i
|
||||
rw [← ha'] at A
|
||||
simp at A
|
||||
apply ContinuousAt.comp
|
||||
apply Complex.continuous_abs.continuousAt
|
||||
fun_prop
|
Loading…
Reference in New Issue
Block a user