From eb4c9da6b58505cef7a7c3c2ff06b222c2a12ff8 Mon Sep 17 00:00:00 2001 From: Stefan Kebekus Date: Wed, 31 Jul 2024 14:54:41 +0200 Subject: [PATCH] working --- Nevanlinna/holomorphic_JensenFormula.lean | 108 ++++++++++++++++++++++ 1 file changed, 108 insertions(+) create mode 100644 Nevanlinna/holomorphic_JensenFormula.lean diff --git a/Nevanlinna/holomorphic_JensenFormula.lean b/Nevanlinna/holomorphic_JensenFormula.lean new file mode 100644 index 0000000..e138191 --- /dev/null +++ b/Nevanlinna/holomorphic_JensenFormula.lean @@ -0,0 +1,108 @@ +import Nevanlinna.harmonicAt_examples +import Nevanlinna.harmonicAt_meanValue + + +theorem jensen_case_R_eq_one + (f : ℂ → ℂ) + (h₁f : Differentiable ℂ f) + (h₂f : f 0 ≠ 0) + (S : Finset ℕ) + (a : S → ℂ) + (ha : ∀ s, a s ∈ Metric.ball 0 1) + (F : ℂ → ℂ) + (h₁F : Differentiable ℂ F) + (h₂F : ∀ z, F z ≠ 0) + (h₃F : f = fun z ↦ (F z) * ∑ s : S, (z - a s)) + : + Real.log ‖f 0‖ = -∑ s, Real.log (‖a s‖⁻¹) + (2 * Real.pi)⁻¹ * ∫ (x : ℝ) in (0)..2 * Real.pi, Real.log ‖f (circleMap 0 1 x)‖ := by + + let logAbsF := fun w ↦ Real.log ‖F w‖ + + have t₀ : ∀ z, HarmonicAt logAbsF z := by + intro z + apply logabs_of_holomorphicAt_is_harmonic + sorry + exact h₂F z + + have t₁ : (∫ (x : ℝ) in (0)..2 * Real.pi, logAbsF (circleMap 0 1 x)) = 2 * Real.pi * logAbsF 0 := by + apply harmonic_meanValue t₀ 1 + exact Real.zero_lt_one + + let logAbsf := fun w ↦ Real.log ‖f w‖ + have s₀ : ∀ z, f z ≠ 0 → logAbsf z = logAbsF z + ∑ s, Real.log ‖z - a s‖ := by + sorry + have s₁ : ∀ z, f z ≠ 0 → logAbsF z = logAbsf z - ∑ s, Real.log ‖z - a s‖ := by + sorry + + rw [s₁ 0 h₂f] at t₁ + + have {x : ℝ} : f (circleMap 0 1 x) ≠ 0 := by sorry + simp_rw [s₁ (circleMap 0 1 _) this] at t₁ + rw [intervalIntegral.integral_sub] at t₁ + rw [intervalIntegral.integral_finset_sum] at t₁ + + have {i : S} : ∫ (x : ℝ) in (0)..2 * Real.pi, Real.log ‖circleMap 0 1 x - a i‖ = 0 := by + + sorry + simp_rw [this] at t₁ + simp at t₁ + rw [t₁] + simp + have : Real.pi⁻¹ * 2⁻¹ * (2 * Real.pi * (logAbsf 0 - ∑ x ∈ S.attach, Real.log (Complex.abs (a x)))) = logAbsf 0 - ∑ x ∈ S.attach, Real.log (Complex.abs (a x)) := by + sorry + rw [this] + simp + rfl + -- ∀ i ∈ Finset.univ, IntervalIntegrable (fun x => Real.log ‖circleMap 0 1 x - a i‖) MeasureTheory.volume 0 (2 * Real.pi) + intro i hi + apply Continuous.intervalIntegrable + apply continuous_iff_continuousAt.2 + intro x + have : (fun x => Real.log ‖circleMap 0 1 x - a i‖) = Real.log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - a i) := + rfl + rw [this] + apply ContinuousAt.comp + apply Real.continuousAt_log + simp + by_contra ha' + let A := ha i + rw [← ha'] at A + simp at A + apply ContinuousAt.comp + apply Complex.continuous_abs.continuousAt + fun_prop + -- IntervalIntegrable (fun x => logAbsf (circleMap 0 1 x)) MeasureTheory.volume 0 (2 * Real.pi) + apply Continuous.intervalIntegrable + apply continuous_iff_continuousAt.2 + intro x + have : (fun x => logAbsf (circleMap 0 1 x)) = Real.log ∘ Complex.abs ∘ f ∘ (fun x ↦ circleMap 0 1 x) := + rfl + rw [this] + apply ContinuousAt.comp + simp + sorry + apply ContinuousAt.comp + apply Complex.continuous_abs.continuousAt + apply ContinuousAt.comp + apply h₁f.continuous.continuousAt + let A := continuous_circleMap 0 1 + apply A.continuousAt + -- IntervalIntegrable (fun x => ∑ s : { x // x ∈ S }, Real.log ‖circleMap 0 1 x - a s‖) MeasureTheory.volume 0 (2 * Real.pi) + apply Continuous.intervalIntegrable + apply continuous_finset_sum + intro i hi + apply continuous_iff_continuousAt.2 + intro x + have : (fun x => Real.log ‖circleMap 0 1 x - a i‖) = Real.log ∘ Complex.abs ∘ (fun x ↦ circleMap 0 1 x - a i) := + rfl + rw [this] + apply ContinuousAt.comp + apply Real.continuousAt_log + simp + by_contra ha' + let A := ha i + rw [← ha'] at A + simp at A + apply ContinuousAt.comp + apply Complex.continuous_abs.continuousAt + fun_prop