This commit is contained in:
Stefan Kebekus
2024-07-31 14:54:41 +02:00
parent 167db4310c
commit eb4c9da6b5

View File

@@ -0,0 +1,108 @@
import Nevanlinna.harmonicAt_examples
import Nevanlinna.harmonicAt_meanValue
theorem jensen_case_R_eq_one
(f : )
(h₁f : Differentiable f)
(h₂f : f 0 0)
(S : Finset )
(a : S )
(ha : s, a s Metric.ball 0 1)
(F : )
(h₁F : Differentiable F)
(h₂F : z, F z 0)
(h₃F : f = fun z (F z) * s : S, (z - a s))
:
Real.log f 0 = - s, Real.log (a s⁻¹) + (2 * Real.pi)⁻¹ * (x : ) in (0)..2 * Real.pi, Real.log f (circleMap 0 1 x) := by
let logAbsF := fun w Real.log F w
have t₀ : z, HarmonicAt logAbsF z := by
intro z
apply logabs_of_holomorphicAt_is_harmonic
sorry
exact h₂F z
have t₁ : ( (x : ) in (0)..2 * Real.pi, logAbsF (circleMap 0 1 x)) = 2 * Real.pi * logAbsF 0 := by
apply harmonic_meanValue t₀ 1
exact Real.zero_lt_one
let logAbsf := fun w Real.log f w
have s₀ : z, f z 0 logAbsf z = logAbsF z + s, Real.log z - a s := by
sorry
have s₁ : z, f z 0 logAbsF z = logAbsf z - s, Real.log z - a s := by
sorry
rw [s₁ 0 h₂f] at t₁
have {x : } : f (circleMap 0 1 x) 0 := by sorry
simp_rw [s₁ (circleMap 0 1 _) this] at t₁
rw [intervalIntegral.integral_sub] at t₁
rw [intervalIntegral.integral_finset_sum] at t₁
have {i : S} : (x : ) in (0)..2 * Real.pi, Real.log circleMap 0 1 x - a i = 0 := by
sorry
simp_rw [this] at t₁
simp at t₁
rw [t₁]
simp
have : Real.pi⁻¹ * 2⁻¹ * (2 * Real.pi * (logAbsf 0 - x S.attach, Real.log (Complex.abs (a x)))) = logAbsf 0 - x S.attach, Real.log (Complex.abs (a x)) := by
sorry
rw [this]
simp
rfl
-- ∀ i ∈ Finset.univ, IntervalIntegrable (fun x => Real.log ‖circleMap 0 1 x - a i‖) MeasureTheory.volume 0 (2 * Real.pi)
intro i hi
apply Continuous.intervalIntegrable
apply continuous_iff_continuousAt.2
intro x
have : (fun x => Real.log circleMap 0 1 x - a i) = Real.log Complex.abs (fun x circleMap 0 1 x - a i) :=
rfl
rw [this]
apply ContinuousAt.comp
apply Real.continuousAt_log
simp
by_contra ha'
let A := ha i
rw [ ha'] at A
simp at A
apply ContinuousAt.comp
apply Complex.continuous_abs.continuousAt
fun_prop
-- IntervalIntegrable (fun x => logAbsf (circleMap 0 1 x)) MeasureTheory.volume 0 (2 * Real.pi)
apply Continuous.intervalIntegrable
apply continuous_iff_continuousAt.2
intro x
have : (fun x => logAbsf (circleMap 0 1 x)) = Real.log Complex.abs f (fun x circleMap 0 1 x) :=
rfl
rw [this]
apply ContinuousAt.comp
simp
sorry
apply ContinuousAt.comp
apply Complex.continuous_abs.continuousAt
apply ContinuousAt.comp
apply h₁f.continuous.continuousAt
let A := continuous_circleMap 0 1
apply A.continuousAt
-- IntervalIntegrable (fun x => ∑ s : { x // x ∈ S }, Real.log ‖circleMap 0 1 x - a s‖) MeasureTheory.volume 0 (2 * Real.pi)
apply Continuous.intervalIntegrable
apply continuous_finset_sum
intro i hi
apply continuous_iff_continuousAt.2
intro x
have : (fun x => Real.log circleMap 0 1 x - a i) = Real.log Complex.abs (fun x circleMap 0 1 x - a i) :=
rfl
rw [this]
apply ContinuousAt.comp
apply Real.continuousAt_log
simp
by_contra ha'
let A := ha i
rw [ ha'] at A
simp at A
apply ContinuousAt.comp
apply Complex.continuous_abs.continuousAt
fun_prop