Saving, renaming

This commit is contained in:
Stefan Kebekus 2024-07-30 12:19:59 +02:00
parent a2c2d05789
commit d4de5d8b5a
2 changed files with 25 additions and 11 deletions

View File

@ -1,7 +1,7 @@
import Mathlib.Analysis.SpecialFunctions.Complex.LogDeriv import Mathlib.Analysis.SpecialFunctions.Complex.LogDeriv
import Nevanlinna.complexHarmonic import Nevanlinna.complexHarmonic
import Nevanlinna.complexHarmonic
import Nevanlinna.holomorphicAt import Nevanlinna.holomorphicAt
import Nevanlinna.holomorphic_primitive
theorem CauchyRiemann₆ theorem CauchyRiemann₆
@ -194,7 +194,20 @@ theorem harmonic_is_realOfHolomorphic
apply Differentiable.const_smul apply Differentiable.const_smul
exact reg₁f_I.differentiable le_rfl exact reg₁f_I.differentiable le_rfl
let F := primitive 0 g
use F
intro z
sorry constructor
· -- HolomorphicAt F z
apply HolomorphicAt_iff.2
use {z : | true}
constructor
· exact isOpen_const
· constructor
· simp
· intro w hw
let A : HasDerivAt (primitive 0 g) (g w) w := primitive_fderiv g reg₁
apply A.differentiableAt
· -- (F z).re = f z
sorry

View File

@ -3,8 +3,10 @@ import Mathlib.Analysis.SpecialFunctions.Integrals
import Mathlib.MeasureTheory.Integral.DivergenceTheorem import Mathlib.MeasureTheory.Integral.DivergenceTheorem
import Mathlib.MeasureTheory.Integral.IntervalIntegral import Mathlib.MeasureTheory.Integral.IntervalIntegral
import Mathlib.MeasureTheory.Function.LocallyIntegrable import Mathlib.MeasureTheory.Function.LocallyIntegrable
import Nevanlinna.partialDeriv
import Nevanlinna.cauchyRiemann
/-
noncomputable def partialDeriv noncomputable def partialDeriv
{E : Type*} [NormedAddCommGroup E] [NormedSpace E] {E : Type*} [NormedAddCommGroup E] [NormedSpace E]
{F : Type*} [NormedAddCommGroup F] [NormedSpace F] : E → (E → F) → (E → F) := {F : Type*} [NormedAddCommGroup F] [NormedSpace F] : E → (E → F) → (E → F) :=
@ -47,7 +49,6 @@ theorem partialDeriv_compCLE
rw [ContinuousLinearEquiv.comp_differentiableAt_iff] rw [ContinuousLinearEquiv.comp_differentiableAt_iff]
exact hyp exact hyp
theorem partialDeriv_smul'₂ theorem partialDeriv_smul'₂
{E : Type*} [NormedAddCommGroup E] [NormedSpace E] {E : Type*} [NormedAddCommGroup E] [NormedSpace E]
{F : Type*} [NormedAddCommGroup F] [NormedSpace F] {F : Type*} [NormedAddCommGroup F] [NormedSpace F]
@ -84,11 +85,10 @@ theorem partialDeriv_smul'₂
rw [partialDeriv_compCLE] rw [partialDeriv_compCLE]
tauto tauto
theorem CauchyRiemann₄ theorem CauchyRiemann₄
{F : Type*} [NormedAddCommGroup F] [NormedSpace F] {F : Type*} [NormedAddCommGroup F] [NormedSpace F]
{f : → F} : {f : → F} :
(Differentiable f) → partialDeriv Complex.I f = Complex.I • partialDeriv 1 f := by (Differentiable f) → partialDeriv Complex.I f = Complex.I • partialDeriv 1 f := by
intro h intro h
unfold partialDeriv unfold partialDeriv
@ -106,6 +106,7 @@ theorem CauchyRiemann₄
rw [DifferentiableAt.fderiv_restrictScalars (h w)] rw [DifferentiableAt.fderiv_restrictScalars (h w)]
funext w funext w
simp simp
-/
theorem MeasureTheory.integral2_divergence₃ theorem MeasureTheory.integral2_divergence₃
@ -207,9 +208,9 @@ theorem integral_divergence₅
exact h₁f exact h₁f
let A := integral_divergence₄ (-Complex.I • F) F h₁g h₁f lowerLeft.re upperRight.im upperRight.re lowerLeft.im let A := integral_divergence₄ (-Complex.I • F) F h₁g h₁f lowerLeft.re upperRight.im upperRight.re lowerLeft.im
have {z : } : fderiv F z Complex.I = partialDeriv Complex.I F z := by rfl have {z : } : fderiv F z Complex.I = partialDeriv Complex.I F z := by rfl
conv at A in (fderiv F _) _ => rw [this] conv at A in (fderiv F _) _ => rw [this]
have {z : } : fderiv (-Complex.I • F) z 1 = partialDeriv 1 (-Complex.I • F) z := by rfl have {z : } : fderiv (-Complex.I • F) z 1 = partialDeriv 1 (-Complex.I • F) z := by rfl
conv at A in (fderiv (-Complex.I • F) _) _ => rw [this] conv at A in (fderiv (-Complex.I • F) _) _ => rw [this]
conv at A => conv at A =>
left left