Saving, renaming
This commit is contained in:
parent
a2c2d05789
commit
d4de5d8b5a
|
@ -1,7 +1,7 @@
|
|||
import Mathlib.Analysis.SpecialFunctions.Complex.LogDeriv
|
||||
import Nevanlinna.complexHarmonic
|
||||
import Nevanlinna.complexHarmonic
|
||||
import Nevanlinna.holomorphicAt
|
||||
import Nevanlinna.holomorphic_primitive
|
||||
|
||||
|
||||
theorem CauchyRiemann₆
|
||||
|
@ -194,7 +194,20 @@ theorem harmonic_is_realOfHolomorphic
|
|||
apply Differentiable.const_smul
|
||||
exact reg₁f_I.differentiable le_rfl
|
||||
|
||||
|
||||
|
||||
|
||||
sorry
|
||||
let F := primitive 0 g
|
||||
use F
|
||||
intro z
|
||||
constructor
|
||||
· -- HolomorphicAt F z
|
||||
apply HolomorphicAt_iff.2
|
||||
use {z : ℂ | true}
|
||||
constructor
|
||||
· exact isOpen_const
|
||||
· constructor
|
||||
· simp
|
||||
· intro w hw
|
||||
let A : HasDerivAt (primitive 0 g) (g w) w := primitive_fderiv g reg₁
|
||||
apply A.differentiableAt
|
||||
· -- (F z).re = f z
|
||||
|
||||
sorry
|
|
@ -3,8 +3,10 @@ import Mathlib.Analysis.SpecialFunctions.Integrals
|
|||
import Mathlib.MeasureTheory.Integral.DivergenceTheorem
|
||||
import Mathlib.MeasureTheory.Integral.IntervalIntegral
|
||||
import Mathlib.MeasureTheory.Function.LocallyIntegrable
|
||||
import Nevanlinna.partialDeriv
|
||||
import Nevanlinna.cauchyRiemann
|
||||
|
||||
|
||||
/-
|
||||
noncomputable def partialDeriv
|
||||
{E : Type*} [NormedAddCommGroup E] [NormedSpace ℝ E]
|
||||
{F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F] : E → (E → F) → (E → F) :=
|
||||
|
@ -47,7 +49,6 @@ theorem partialDeriv_compCLE
|
|||
rw [ContinuousLinearEquiv.comp_differentiableAt_iff]
|
||||
exact hyp
|
||||
|
||||
|
||||
theorem partialDeriv_smul'₂
|
||||
{E : Type*} [NormedAddCommGroup E] [NormedSpace ℂ E]
|
||||
{F : Type*} [NormedAddCommGroup F] [NormedSpace ℂ F]
|
||||
|
@ -84,11 +85,10 @@ theorem partialDeriv_smul'₂
|
|||
rw [partialDeriv_compCLE]
|
||||
tauto
|
||||
|
||||
|
||||
theorem CauchyRiemann₄
|
||||
{F : Type*} [NormedAddCommGroup F] [NormedSpace ℂ F]
|
||||
{f : ℂ → F} :
|
||||
(Differentiable ℂ f) → partialDeriv Complex.I f = Complex.I • partialDeriv 1 f := by
|
||||
(Differentiable ℂ f) → partialDeriv ℝ Complex.I f = Complex.I • partialDeriv ℝ 1 f := by
|
||||
intro h
|
||||
unfold partialDeriv
|
||||
|
||||
|
@ -106,6 +106,7 @@ theorem CauchyRiemann₄
|
|||
rw [DifferentiableAt.fderiv_restrictScalars ℝ (h w)]
|
||||
funext w
|
||||
simp
|
||||
-/
|
||||
|
||||
|
||||
theorem MeasureTheory.integral2_divergence₃
|
||||
|
@ -207,9 +208,9 @@ theorem integral_divergence₅
|
|||
exact h₁f
|
||||
|
||||
let A := integral_divergence₄ (-Complex.I • F) F h₁g h₁f lowerLeft.re upperRight.im upperRight.re lowerLeft.im
|
||||
have {z : ℂ} : fderiv ℝ F z Complex.I = partialDeriv Complex.I F z := by rfl
|
||||
have {z : ℂ} : fderiv ℝ F z Complex.I = partialDeriv ℝ Complex.I F z := by rfl
|
||||
conv at A in (fderiv ℝ F _) _ => rw [this]
|
||||
have {z : ℂ} : fderiv ℝ (-Complex.I • F) z 1 = partialDeriv 1 (-Complex.I • F) z := by rfl
|
||||
have {z : ℂ} : fderiv ℝ (-Complex.I • F) z 1 = partialDeriv ℝ 1 (-Complex.I • F) z := by rfl
|
||||
conv at A in (fderiv ℝ (-Complex.I • F) _) _ => rw [this]
|
||||
conv at A =>
|
||||
left
|
Loading…
Reference in New Issue