Working
This commit is contained in:
parent
4ca5f6d4d2
commit
a2c2d05789
@ -114,56 +114,86 @@ theorem harmonic_is_realOfHolomorphic
|
||||
|
||||
let g : ℂ → ℂ := f_1 - Complex.I • f_I
|
||||
|
||||
have reg₀ : Differentiable ℝ g := by
|
||||
let smulICLM : ℂ ≃L[ℝ] ℂ :=
|
||||
{
|
||||
toFun := fun x ↦ Complex.I • x
|
||||
map_add' := fun x y => DistribSMul.smul_add Complex.I x y
|
||||
map_smul' := fun m x => (smul_comm ((RingHom.id ℝ) m) Complex.I x).symm
|
||||
invFun := fun x ↦ (Complex.I)⁻¹ • x
|
||||
left_inv := by
|
||||
intro x
|
||||
simp
|
||||
rw [← mul_assoc, mul_comm]
|
||||
simp
|
||||
right_inv := by
|
||||
intro x
|
||||
simp
|
||||
rw [← mul_assoc]
|
||||
simp
|
||||
continuous_toFun := continuous_const_smul Complex.I
|
||||
continuous_invFun := continuous_const_smul (Complex.I)⁻¹
|
||||
}
|
||||
|
||||
apply Differentiable.sub
|
||||
apply Differentiable.comp
|
||||
exact ContinuousLinearMap.differentiable Complex.ofRealCLM
|
||||
have reg₂f : ContDiff ℝ 2 f := by
|
||||
apply contDiff_iff_contDiffAt.mpr
|
||||
intro z
|
||||
sorry
|
||||
apply Differentiable.comp
|
||||
sorry
|
||||
sorry
|
||||
exact (hf z).1
|
||||
|
||||
have reg₁f_1 : ContDiff ℝ 1 f_1 := by
|
||||
apply contDiff_iff_contDiffAt.mpr
|
||||
intro z
|
||||
dsimp [f_1]
|
||||
apply ContDiffAt.continuousLinearMap_comp
|
||||
exact partialDeriv_contDiffAt ℝ (hf z).1 1
|
||||
|
||||
have reg₁f_I : ContDiff ℝ 1 f_I := by
|
||||
apply contDiff_iff_contDiffAt.mpr
|
||||
intro z
|
||||
dsimp [f_I]
|
||||
apply ContDiffAt.continuousLinearMap_comp
|
||||
exact partialDeriv_contDiffAt ℝ (hf z).1 Complex.I
|
||||
|
||||
have reg₁g : ContDiff ℝ 1 g := by
|
||||
dsimp [g]
|
||||
apply ContDiff.sub
|
||||
exact reg₁f_1
|
||||
have : Complex.I • f_I = fun x ↦ Complex.I • f_I x := rfl
|
||||
rw [this]
|
||||
apply ContDiff.const_smul
|
||||
exact reg₁f_I
|
||||
|
||||
have reg₁ : Differentiable ℂ g := by
|
||||
intro z
|
||||
apply CauchyRiemann₇.2
|
||||
constructor
|
||||
· exact reg₀ z
|
||||
· apply Differentiable.differentiableAt
|
||||
apply ContDiff.differentiable
|
||||
exact reg₁g
|
||||
rfl
|
||||
· dsimp [g]
|
||||
have : f_1 - Complex.I • f_I = f_1 + (- Complex.I • f_I) := by
|
||||
rw [sub_eq_add_neg]
|
||||
simp
|
||||
rw [this, partialDeriv_add₂, partialDeriv_add₂]
|
||||
rw [partialDeriv_sub₂, partialDeriv_sub₂]
|
||||
simp
|
||||
dsimp [f_1, f_I]
|
||||
|
||||
sorry
|
||||
sorry
|
||||
sorry
|
||||
sorry
|
||||
sorry
|
||||
rw [partialDeriv_smul'₂, partialDeriv_smul'₂]
|
||||
rw [partialDeriv_compContLin, partialDeriv_compContLin, partialDeriv_compContLin, partialDeriv_compContLin]
|
||||
rw [mul_sub]
|
||||
simp
|
||||
rw [← mul_assoc]
|
||||
simp
|
||||
rw [add_comm, sub_eq_add_neg]
|
||||
congr 1
|
||||
· rw [partialDeriv_comm reg₂f Complex.I 1]
|
||||
· let A := Filter.EventuallyEq.eq_of_nhds (hf z).2
|
||||
simp at A
|
||||
unfold Complex.laplace at A
|
||||
conv =>
|
||||
right
|
||||
right
|
||||
rw [← sub_zero (partialDeriv ℝ 1 (partialDeriv ℝ 1 f) z)]
|
||||
rw [← A]
|
||||
simp
|
||||
|
||||
--Differentiable ℝ (partialDeriv ℝ _ f)
|
||||
repeat
|
||||
apply ContDiff.differentiable
|
||||
apply contDiff_iff_contDiffAt.mpr
|
||||
exact fun w ↦ partialDeriv_contDiffAt ℝ (hf w).1 _
|
||||
apply le_rfl
|
||||
-- Differentiable ℝ f_1
|
||||
exact reg₁f_1.differentiable le_rfl
|
||||
-- Differentiable ℝ (Complex.I • f_I)
|
||||
have : Complex.I • f_I = fun x ↦ Complex.I • f_I x := rfl
|
||||
rw [this]
|
||||
apply Differentiable.const_smul
|
||||
exact reg₁f_I.differentiable le_rfl
|
||||
-- Differentiable ℝ f_1
|
||||
exact reg₁f_1.differentiable le_rfl
|
||||
-- Differentiable ℝ (Complex.I • f_I)
|
||||
have : Complex.I • f_I = fun x ↦ Complex.I • f_I x := rfl
|
||||
rw [this]
|
||||
apply Differentiable.const_smul
|
||||
exact reg₁f_I.differentiable le_rfl
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -102,6 +102,20 @@ theorem partialDeriv_add₂ {f₁ f₂ : E → F} (h₁ : Differentiable 𝕜 f
|
||||
simp
|
||||
|
||||
|
||||
theorem partialDeriv_sub₂ {f₁ f₂ : E → F} (h₁ : Differentiable 𝕜 f₁) (h₂ : Differentiable 𝕜 f₂) : ∀ v : E, partialDeriv 𝕜 v (f₁ - f₂) = (partialDeriv 𝕜 v f₁) - (partialDeriv 𝕜 v f₂) := by
|
||||
unfold partialDeriv
|
||||
intro v
|
||||
have : f₁ - f₂ = fun y ↦ f₁ y - f₂ y := by rfl
|
||||
rw [this]
|
||||
conv =>
|
||||
left
|
||||
intro w
|
||||
left
|
||||
rw [fderiv_sub (h₁ w) (h₂ w)]
|
||||
funext w
|
||||
simp
|
||||
|
||||
|
||||
theorem partialDeriv_add₂_differentiableAt
|
||||
{f₁ f₂ : E → F}
|
||||
{v : E}
|
||||
|
Loading…
Reference in New Issue
Block a user