All done.
This commit is contained in:
parent
40659c2f17
commit
c2c730e510
|
@ -407,11 +407,7 @@ theorem log_normSq_of_holomorphicOn_is_harmonicOn
|
||||||
|
|
||||||
-- HarmonicOn (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f) s
|
-- HarmonicOn (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f) s
|
||||||
apply holomorphicOn_is_harmonicOn hs
|
apply holomorphicOn_is_harmonicOn hs
|
||||||
apply?
|
exact DifferentiableOn.clog h₁ h₃
|
||||||
|
|
||||||
|
|
||||||
exact h₁ z
|
|
||||||
|
|
||||||
|
|
||||||
theorem log_normSq_of_holomorphic_is_harmonic
|
theorem log_normSq_of_holomorphic_is_harmonic
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
|
|
|
@ -65,22 +65,52 @@ theorem laplace_add_ContDiffOn
|
||||||
simp
|
simp
|
||||||
intro x hx
|
intro x hx
|
||||||
|
|
||||||
|
have hf₁ : ∀ z ∈ s, DifferentiableAt ℝ f₁ z := by
|
||||||
|
intro z hz
|
||||||
|
convert DifferentiableOn.differentiableAt _ (IsOpen.mem_nhds hs hz)
|
||||||
|
apply ContDiffOn.differentiableOn h₁ one_le_two
|
||||||
|
have hf₂ : ∀ z ∈ s, DifferentiableAt ℝ f₂ z := by
|
||||||
|
intro z hz
|
||||||
|
convert DifferentiableOn.differentiableAt _ (IsOpen.mem_nhds hs hz)
|
||||||
|
apply ContDiffOn.differentiableOn h₂ one_le_two
|
||||||
have : partialDeriv ℝ 1 (f₁ + f₂) =ᶠ[nhds x] (partialDeriv ℝ 1 f₁) + (partialDeriv ℝ 1 f₂) := by
|
have : partialDeriv ℝ 1 (f₁ + f₂) =ᶠ[nhds x] (partialDeriv ℝ 1 f₁) + (partialDeriv ℝ 1 f₂) := by
|
||||||
sorry
|
apply Filter.eventuallyEq_iff_exists_mem.2
|
||||||
|
use s
|
||||||
|
constructor
|
||||||
|
· exact IsOpen.mem_nhds hs hx
|
||||||
|
· intro z hz
|
||||||
|
apply partialDeriv_add₂_differentiableAt
|
||||||
|
exact hf₁ z hz
|
||||||
|
exact hf₂ z hz
|
||||||
rw [partialDeriv_eventuallyEq ℝ this]
|
rw [partialDeriv_eventuallyEq ℝ this]
|
||||||
have t₁ : DifferentiableAt ℝ (partialDeriv ℝ 1 f₁) x := by
|
have t₁ : DifferentiableAt ℝ (partialDeriv ℝ 1 f₁) x := by
|
||||||
sorry
|
let B₀ := (h₁ x hx).contDiffAt (IsOpen.mem_nhds hs hx)
|
||||||
|
let A₀ := partialDeriv_contDiffAt ℝ B₀ 1
|
||||||
|
exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞)
|
||||||
have t₂ : DifferentiableAt ℝ (partialDeriv ℝ 1 f₂) x := by
|
have t₂ : DifferentiableAt ℝ (partialDeriv ℝ 1 f₂) x := by
|
||||||
sorry
|
let B₀ := (h₂ x hx).contDiffAt (IsOpen.mem_nhds hs hx)
|
||||||
|
let A₀ := partialDeriv_contDiffAt ℝ B₀ 1
|
||||||
|
exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞)
|
||||||
rw [partialDeriv_add₂_differentiableAt ℝ t₁ t₂]
|
rw [partialDeriv_add₂_differentiableAt ℝ t₁ t₂]
|
||||||
|
|
||||||
have : partialDeriv ℝ Complex.I (f₁ + f₂) =ᶠ[nhds x] (partialDeriv ℝ Complex.I f₁) + (partialDeriv ℝ Complex.I f₂) := by
|
have : partialDeriv ℝ Complex.I (f₁ + f₂) =ᶠ[nhds x] (partialDeriv ℝ Complex.I f₁) + (partialDeriv ℝ Complex.I f₂) := by
|
||||||
sorry
|
apply Filter.eventuallyEq_iff_exists_mem.2
|
||||||
|
use s
|
||||||
|
constructor
|
||||||
|
· exact IsOpen.mem_nhds hs hx
|
||||||
|
· intro z hz
|
||||||
|
apply partialDeriv_add₂_differentiableAt
|
||||||
|
exact hf₁ z hz
|
||||||
|
exact hf₂ z hz
|
||||||
rw [partialDeriv_eventuallyEq ℝ this]
|
rw [partialDeriv_eventuallyEq ℝ this]
|
||||||
have t₃ : DifferentiableAt ℝ (partialDeriv ℝ Complex.I f₁) x := by
|
have t₃ : DifferentiableAt ℝ (partialDeriv ℝ Complex.I f₁) x := by
|
||||||
sorry
|
let B₀ := (h₁ x hx).contDiffAt (IsOpen.mem_nhds hs hx)
|
||||||
|
let A₀ := partialDeriv_contDiffAt ℝ B₀ Complex.I
|
||||||
|
exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞)
|
||||||
have t₄ : DifferentiableAt ℝ (partialDeriv ℝ Complex.I f₂) x := by
|
have t₄ : DifferentiableAt ℝ (partialDeriv ℝ Complex.I f₂) x := by
|
||||||
sorry
|
let B₀ := (h₂ x hx).contDiffAt (IsOpen.mem_nhds hs hx)
|
||||||
|
let A₀ := partialDeriv_contDiffAt ℝ B₀ Complex.I
|
||||||
|
exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞)
|
||||||
rw [partialDeriv_add₂_differentiableAt ℝ t₃ t₄]
|
rw [partialDeriv_add₂_differentiableAt ℝ t₃ t₄]
|
||||||
|
|
||||||
-- I am super confused at this point because the tactic 'ring' does not work.
|
-- I am super confused at this point because the tactic 'ring' does not work.
|
||||||
|
|
Loading…
Reference in New Issue