diff --git a/Nevanlinna/complexHarmonic.lean b/Nevanlinna/complexHarmonic.lean index 8ce9bcd..398e6ef 100644 --- a/Nevanlinna/complexHarmonic.lean +++ b/Nevanlinna/complexHarmonic.lean @@ -407,11 +407,7 @@ theorem log_normSq_of_holomorphicOn_is_harmonicOn -- HarmonicOn (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f) s apply holomorphicOn_is_harmonicOn hs - apply? - - - exact h₁ z - + exact DifferentiableOn.clog h₁ h₃ theorem log_normSq_of_holomorphic_is_harmonic {f : ℂ → ℂ} diff --git a/Nevanlinna/laplace.lean b/Nevanlinna/laplace.lean index 5a9b1ac..2025d0c 100644 --- a/Nevanlinna/laplace.lean +++ b/Nevanlinna/laplace.lean @@ -65,22 +65,52 @@ theorem laplace_add_ContDiffOn simp intro x hx + have hf₁ : ∀ z ∈ s, DifferentiableAt ℝ f₁ z := by + intro z hz + convert DifferentiableOn.differentiableAt _ (IsOpen.mem_nhds hs hz) + apply ContDiffOn.differentiableOn h₁ one_le_two + have hf₂ : ∀ z ∈ s, DifferentiableAt ℝ f₂ z := by + intro z hz + convert DifferentiableOn.differentiableAt _ (IsOpen.mem_nhds hs hz) + apply ContDiffOn.differentiableOn h₂ one_le_two have : partialDeriv ℝ 1 (f₁ + f₂) =ᶠ[nhds x] (partialDeriv ℝ 1 f₁) + (partialDeriv ℝ 1 f₂) := by - sorry + apply Filter.eventuallyEq_iff_exists_mem.2 + use s + constructor + · exact IsOpen.mem_nhds hs hx + · intro z hz + apply partialDeriv_add₂_differentiableAt + exact hf₁ z hz + exact hf₂ z hz rw [partialDeriv_eventuallyEq ℝ this] have t₁ : DifferentiableAt ℝ (partialDeriv ℝ 1 f₁) x := by - sorry + let B₀ := (h₁ x hx).contDiffAt (IsOpen.mem_nhds hs hx) + let A₀ := partialDeriv_contDiffAt ℝ B₀ 1 + exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞) have t₂ : DifferentiableAt ℝ (partialDeriv ℝ 1 f₂) x := by - sorry + let B₀ := (h₂ x hx).contDiffAt (IsOpen.mem_nhds hs hx) + let A₀ := partialDeriv_contDiffAt ℝ B₀ 1 + exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞) rw [partialDeriv_add₂_differentiableAt ℝ t₁ t₂] have : partialDeriv ℝ Complex.I (f₁ + f₂) =ᶠ[nhds x] (partialDeriv ℝ Complex.I f₁) + (partialDeriv ℝ Complex.I f₂) := by - sorry + apply Filter.eventuallyEq_iff_exists_mem.2 + use s + constructor + · exact IsOpen.mem_nhds hs hx + · intro z hz + apply partialDeriv_add₂_differentiableAt + exact hf₁ z hz + exact hf₂ z hz rw [partialDeriv_eventuallyEq ℝ this] have t₃ : DifferentiableAt ℝ (partialDeriv ℝ Complex.I f₁) x := by - sorry + let B₀ := (h₁ x hx).contDiffAt (IsOpen.mem_nhds hs hx) + let A₀ := partialDeriv_contDiffAt ℝ B₀ Complex.I + exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞) have t₄ : DifferentiableAt ℝ (partialDeriv ℝ Complex.I f₂) x := by - sorry + let B₀ := (h₂ x hx).contDiffAt (IsOpen.mem_nhds hs hx) + let A₀ := partialDeriv_contDiffAt ℝ B₀ Complex.I + exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞) rw [partialDeriv_add₂_differentiableAt ℝ t₃ t₄] -- I am super confused at this point because the tactic 'ring' does not work.