working…
This commit is contained in:
parent
f65785b62b
commit
b3eefceb39
@ -74,3 +74,23 @@ lemma WithTopCoe
|
|||||||
exact Int.ofNat_eq_zero.mp this
|
exact Int.ofNat_eq_zero.mp this
|
||||||
rw [this]
|
rw [this]
|
||||||
rfl
|
rfl
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
lemma rwx
|
||||||
|
{a b : WithTop ℤ}
|
||||||
|
(ha : a ≠ ⊤)
|
||||||
|
(hb : b ≠ ⊤) :
|
||||||
|
a + b ≠ ⊤ := by
|
||||||
|
simp; tauto
|
||||||
|
|
||||||
|
lemma untop_add
|
||||||
|
{a b : WithTop ℤ}
|
||||||
|
(ha : a ≠ ⊤)
|
||||||
|
(hb : b ≠ ⊤) :
|
||||||
|
(a + b).untop (rwx ha hb) = a.untop ha + (b.untop hb) := by
|
||||||
|
rw [WithTop.untop_eq_iff]
|
||||||
|
rw [WithTop.coe_add]
|
||||||
|
rw [WithTop.coe_untop]
|
||||||
|
rw [WithTop.coe_untop]
|
||||||
|
@ -102,6 +102,29 @@ theorem MeromorphicOn.divisor_def₂
|
|||||||
exact Eq.symm (WithTop.coe_untop (hf z hz).order h₂f)
|
exact Eq.symm (WithTop.coe_untop (hf z hz).order h₂f)
|
||||||
|
|
||||||
|
|
||||||
|
theorem MeromorphicOn.divisor_mul₀
|
||||||
|
{f₁ f₂ : ℂ → ℂ}
|
||||||
|
{U : Set ℂ}
|
||||||
|
{z : ℂ}
|
||||||
|
(hz : z ∈ U)
|
||||||
|
(h₁f₁ : MeromorphicOn f₁ U)
|
||||||
|
(h₂f₁ : (h₁f₁ z hz).order ≠ ⊤)
|
||||||
|
(h₁f₂ : MeromorphicOn f₂ U)
|
||||||
|
(h₂f₂ : (h₁f₂ z hz).order ≠ ⊤) :
|
||||||
|
(h₁f₁.mul h₁f₂).divisor.toFun z = h₁f₁.divisor.toFun z + h₁f₂.divisor.toFun z := by
|
||||||
|
by_cases h₁z : z ∈ U
|
||||||
|
· rw [MeromorphicOn.divisor_def₂ h₁f₁ hz h₂f₁]
|
||||||
|
rw [MeromorphicOn.divisor_def₂ h₁f₂ hz h₂f₂]
|
||||||
|
have B : ((h₁f₁.mul h₁f₂) z hz).order ≠ ⊤ := by
|
||||||
|
rw [MeromorphicAt.order_mul (h₁f₁ z hz) (h₁f₂ z hz)]
|
||||||
|
simp; tauto
|
||||||
|
rw [MeromorphicOn.divisor_def₂ (h₁f₁.mul h₁f₂) hz B]
|
||||||
|
simp_rw [MeromorphicAt.order_mul (h₁f₁ z hz) (h₁f₂ z hz)]
|
||||||
|
rw [untop_add]
|
||||||
|
· unfold MeromorphicOn.divisor
|
||||||
|
simp [h₁z]
|
||||||
|
|
||||||
|
|
||||||
theorem MeromorphicOn.divisor_mul
|
theorem MeromorphicOn.divisor_mul
|
||||||
{f₁ f₂ : ℂ → ℂ}
|
{f₁ f₂ : ℂ → ℂ}
|
||||||
{U : Set ℂ}
|
{U : Set ℂ}
|
||||||
@ -111,12 +134,11 @@ theorem MeromorphicOn.divisor_mul
|
|||||||
(h₂f₂ : ∀ z, (hz : z ∈ U) → (h₁f₂ z hz).order ≠ ⊤) :
|
(h₂f₂ : ∀ z, (hz : z ∈ U) → (h₁f₂ z hz).order ≠ ⊤) :
|
||||||
(h₁f₁.mul h₁f₂).divisor.toFun = h₁f₁.divisor.toFun + h₁f₂.divisor.toFun := by
|
(h₁f₁.mul h₁f₂).divisor.toFun = h₁f₁.divisor.toFun + h₁f₂.divisor.toFun := by
|
||||||
funext z
|
funext z
|
||||||
|
|
||||||
by_cases hz : z ∈ U
|
by_cases hz : z ∈ U
|
||||||
· simp [hz]
|
· rw [MeromorphicOn.divisor_mul₀ hz h₁f₁ (h₂f₁ z hz) h₁f₂ (h₂f₂ z hz)]
|
||||||
rw [MeromorphicOn.divisor_def₂ h₁f₁ hz (h₂f₁ z hz)]
|
simp
|
||||||
rw [MeromorphicOn.divisor_def₂ h₁f₂ hz (h₂f₂ z hz)]
|
· simp
|
||||||
let A := MeromorphicAt.order_mul (h₁f₁ z hz) (h₁f₂ z hz)
|
rw [Function.nmem_support.mp (fun a => hz (h₁f₁.divisor.supportInU a))]
|
||||||
sorry
|
rw [Function.nmem_support.mp (fun a => hz (h₁f₂.divisor.supportInU a))]
|
||||||
· unfold MeromorphicOn.divisor
|
rw [Function.nmem_support.mp (fun a => hz ((h₁f₁.mul h₁f₂).divisor.supportInU a))]
|
||||||
simp [hz]
|
simp
|
||||||
|
Loading…
Reference in New Issue
Block a user