nevanlinna/Nevanlinna/mathlibAddOn.lean

97 lines
2.5 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Mathlib.Analysis.Analytic.Meromorphic
import Mathlib.Analysis.Calculus.ContDiff.Basic
import Mathlib.Analysis.Calculus.FDeriv.Add
import Nevanlinna.analyticAt
variable {𝕜 : Type*} [NontriviallyNormedField 𝕜]
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F]
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace 𝕜 G]
variable {G' : Type*} [NormedAddCommGroup G'] [NormedSpace 𝕜 G']
variable {f f₀ f₁ g : E → F}
variable {f' f₀' f₁' g' : E →L[𝕜] F}
variable (e : E →L[𝕜] F)
variable {x : E}
variable {s t : Set E}
variable {L L₁ L₂ : Filter E}
variable {R : Type*} [Semiring R] [Module R F] [SMulCommClass 𝕜 R F] [ContinuousConstSMul R F]
-- import Mathlib.Analysis.Calculus.FDeriv.Add
@[fun_prop]
theorem Differentiable.const_smul' (h : Differentiable 𝕜 f) (c : R) :
Differentiable 𝕜 (c • f) := by
have : c • f = fun x ↦ c • f x := rfl
rw [this]
exact Differentiable.const_smul h c
-- Mathlib.Analysis.Calculus.ContDiff.Basic
theorem ContDiff.const_smul' {f : E → F} (c : R) (hf : ContDiff 𝕜 n f) :
ContDiff 𝕜 n (c • f) := by
have : c • f = fun x ↦ c • f x := rfl
rw [this]
exact ContDiff.const_smul c hf
open Topology Filter
lemma Mnhds
{α : Type}
{f g : α}
{z₀ : }
(h₁ : f =ᶠ[𝓝[≠] z₀] g)
(h₂ : f z₀ = g z₀) :
f =ᶠ[𝓝 z₀] g := by
apply eventually_nhds_iff.2
obtain ⟨t, h₁t, h₂t⟩ := eventually_nhds_iff.1 (eventually_nhdsWithin_iff.1 h₁)
use t
constructor
· intro y hy
by_cases h₂y : y ∈ ({z₀}ᶜ : Set )
· exact h₁t y hy h₂y
· simp at h₂y
rwa [h₂y]
· exact h₂t
-- unclear where this should go
lemma WithTopCoe
{n : WithTop } :
WithTop.map (Nat.cast : ) n = 0 → n = 0 := by
rcases n with h|h
· intro h
contradiction
· intro h₁
simp only [WithTop.map, Option.map] at h₁
have : (h : ) = 0 := by
exact WithTop.coe_eq_zero.mp h₁
have : h = 0 := by
exact Int.ofNat_eq_zero.mp this
rw [this]
rfl
lemma rwx
{a b : WithTop }
(ha : a ≠ )
(hb : b ≠ ) :
a + b ≠ := by
simp; tauto
lemma untop_add
{a b : WithTop }
(ha : a ≠ )
(hb : b ≠ ) :
(a + b).untop (rwx ha hb) = a.untop ha + (b.untop hb) := by
rw [WithTop.untop_eq_iff]
rw [WithTop.coe_add]
rw [WithTop.coe_untop]
rw [WithTop.coe_untop]