Working…
This commit is contained in:
parent
6e9cb9e62b
commit
93006a2a7e
@ -1,8 +1,9 @@
|
||||
import Mathlib.MeasureTheory.Integral.CircleIntegral
|
||||
import Nevanlinna.divisor
|
||||
import Nevanlinna.stronglyMeromorphicOn
|
||||
import Nevanlinna.meromorphicOn_divisor
|
||||
import Nevanlinna.meromorphicOn_integrability
|
||||
import Nevanlinna.stronglyMeromorphicOn
|
||||
import Nevanlinna.stronglyMeromorphic_JensenFormula
|
||||
|
||||
open Real
|
||||
|
||||
@ -158,20 +159,20 @@ theorem Nevanlinna_firstMain₁
|
||||
rw [add_eq_of_eq_sub]
|
||||
unfold MeromorphicOn.T_infty
|
||||
|
||||
have {A B C D : ℝ → ℝ} : A + B - (C + D) = A - C + (B - D) := by
|
||||
have {A B C D : ℝ → ℝ} : A + B - (C + D) = A - C - (D - B) := by
|
||||
ring
|
||||
rw [this]
|
||||
clear this
|
||||
|
||||
rw [Nevanlinna_counting₀ h₁f]
|
||||
rw [Nevanlinna_counting h₁f]
|
||||
funext r
|
||||
simp
|
||||
rw [← Nevanlinna_proximity h₁f]
|
||||
|
||||
have hr : 0 < r := by sorry
|
||||
|
||||
|
||||
unfold MeromorphicOn.N_infty
|
||||
unfold MeromorphicOn.m_infty
|
||||
simp
|
||||
let A := jensen
|
||||
sorry
|
||||
|
||||
theorem Nevanlinna_firstMain₂
|
||||
|
@ -3,50 +3,11 @@ import Nevanlinna.stronglyMeromorphicOn_eliminate
|
||||
|
||||
open Real
|
||||
|
||||
lemma jensen₀
|
||||
{R : ℝ}
|
||||
(hR : 0 < R)
|
||||
(f : ℂ → ℂ)
|
||||
(h₁f : StronglyMeromorphicOn f (Metric.closedBall 0 R))
|
||||
(h₂f : f 0 ≠ 0) :
|
||||
∃ F : ℂ → ℂ,
|
||||
AnalyticOnNhd ℂ F (Metric.closedBall (0 : ℂ) R)
|
||||
∧ (∀ (u : (Metric.closedBall (0 : ℂ) R)), F u ≠ 0)
|
||||
∧ (fun z ↦ log ‖f z‖) =ᶠ[Filter.codiscreteWithin (Metric.closedBall (0 : ℂ) R)] (fun z ↦ log ‖F z‖ + ∑ᶠ s, (h₁f.meromorphicOn.divisor s) * log ‖z - s‖) := by
|
||||
|
||||
have h₁U : IsConnected (Metric.closedBall (0 : ℂ) R) := by
|
||||
constructor
|
||||
· apply Metric.nonempty_closedBall.mpr
|
||||
exact le_of_lt hR
|
||||
· exact (convex_closedBall (0 : ℂ) R).isPreconnected
|
||||
|
||||
have h₂U : IsCompact (Metric.closedBall (0 : ℂ) R) := isCompact_closedBall (0 : ℂ) R
|
||||
|
||||
|
||||
obtain ⟨F, h₁F, h₂F, h₃F, h₄F⟩ := MeromorphicOn.decompose₃' h₂U h₁U h₁f (by use ⟨0, Metric.mem_closedBall_self (le_of_lt hR)⟩)
|
||||
|
||||
use F
|
||||
constructor
|
||||
· exact h₂F
|
||||
· constructor
|
||||
· exact fun u ↦ h₃F u
|
||||
· rw [Filter.eventuallyEq_iff_exists_mem]
|
||||
use {z | f z ≠ 0}
|
||||
constructor
|
||||
· sorry
|
||||
· intro z hz
|
||||
simp at hz
|
||||
nth_rw 1 [h₄F]
|
||||
simp only [Pi.mul_apply, norm_mul]
|
||||
|
||||
|
||||
sorry
|
||||
|
||||
|
||||
theorem jensen
|
||||
theorem jensen₀
|
||||
{R : ℝ}
|
||||
(hR : 0 < R)
|
||||
(f : ℂ → ℂ)
|
||||
-- WARNING: Not needed. MeromorphicOn suffices
|
||||
(h₁f : StronglyMeromorphicOn f (Metric.closedBall 0 R))
|
||||
(h₂f : f 0 ≠ 0) :
|
||||
log ‖f 0‖ = -∑ᶠ s, (h₁f.meromorphicOn.divisor s) * log (R * ‖s‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ℝ) in (0)..(2 * π), log ‖f (circleMap 0 R x)‖ := by
|
||||
@ -183,7 +144,7 @@ theorem jensen
|
||||
rcases C with C₁|C₂
|
||||
· assumption
|
||||
· let B := h₁f.meromorphicOn.order_ne_top' h₁U
|
||||
let C := fun q ↦ B q ⟨(circleMap 0 R a), t₀⟩
|
||||
let C := fun q ↦ B.1 q ⟨(circleMap 0 R a), t₀⟩
|
||||
rw [C₂] at C
|
||||
have : ∃ u : (Metric.closedBall (0 : ℂ) R), (h₁f u u.2).meromorphicAt.order ≠ ⊤ := by
|
||||
use ⟨(0 : ℂ), (by simp; exact le_of_lt hR)⟩
|
||||
@ -440,3 +401,73 @@ theorem jensen
|
||||
rw [hCon] at hs
|
||||
simp at hs
|
||||
exact hs h'''₂f
|
||||
|
||||
|
||||
theorem jensen
|
||||
{R : ℝ}
|
||||
(hR : 0 < R)
|
||||
(f : ℂ → ℂ)
|
||||
(h₁f : MeromorphicOn f (Metric.closedBall 0 R))
|
||||
(h₁f' : StronglyMeromorphicAt f 0)
|
||||
(h₂f : f 0 ≠ 0) :
|
||||
log ‖f 0‖ = -∑ᶠ s, (h₁f.divisor s) * log (R * ‖s‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ℝ) in (0)..(2 * π), log ‖f (circleMap 0 R x)‖ := by
|
||||
|
||||
let F := h₁f.makeStronglyMeromorphicOn
|
||||
|
||||
have : F 0 = f 0 := by
|
||||
unfold F
|
||||
have : 0 ∈ (Metric.closedBall 0 R) := by
|
||||
simp [hR]
|
||||
exact le_of_lt hR
|
||||
unfold MeromorphicOn.makeStronglyMeromorphicOn
|
||||
simp [this]
|
||||
intro h₁R
|
||||
|
||||
let A := StronglyMeromorphicAt.makeStronglyMeromorphic_id h₁f'
|
||||
simp_rw [A]
|
||||
rw [← this]
|
||||
rw [← this] at h₂f
|
||||
clear this
|
||||
|
||||
have h₁F := stronglyMeromorphicOn_of_makeStronglyMeromorphicOn h₁f
|
||||
|
||||
rw [jensen₀ hR F h₁F h₂f]
|
||||
|
||||
rw [h₁f.divisor_of_makeStronglyMeromorphicOn]
|
||||
congr 2
|
||||
have {x : ℝ} : log ‖F (circleMap 0 R x)‖ = (fun z ↦ log ‖F z‖) (circleMap 0 R x) := by
|
||||
rfl
|
||||
conv =>
|
||||
left
|
||||
arg 1
|
||||
intro x
|
||||
rw [this]
|
||||
have {x : ℝ} : log ‖f (circleMap 0 R x)‖ = (fun z ↦ log ‖f z‖) (circleMap 0 R x) := by
|
||||
rfl
|
||||
conv =>
|
||||
right
|
||||
arg 1
|
||||
intro x
|
||||
rw [this]
|
||||
|
||||
have h'R : R ≠ 0 := by exact Ne.symm (ne_of_lt hR)
|
||||
have hU : Metric.sphere (0 : ℂ) |R| ⊆ (Metric.closedBall (0 : ℂ) R) := by
|
||||
have : R = |R| := by exact Eq.symm (abs_of_pos hR)
|
||||
nth_rw 2 [this]
|
||||
exact Metric.sphere_subset_closedBall
|
||||
|
||||
let A := integral_congr_changeDiscrete h'R hU (f₁ := fun z ↦ log ‖F z‖) (f₂ := fun z ↦ log ‖f z‖)
|
||||
apply A
|
||||
clear A
|
||||
|
||||
rw [Filter.eventuallyEq_iff_exists_mem]
|
||||
have A := makeStronglyMeromorphicOn_changeDiscrete'' h₁f
|
||||
rw [Filter.eventuallyEq_iff_exists_mem] at A
|
||||
obtain ⟨s, h₁s, h₂s⟩ := A
|
||||
use s
|
||||
constructor
|
||||
· exact h₁s
|
||||
· intro x hx
|
||||
let A := h₂s hx
|
||||
simp
|
||||
rw [A]
|
||||
|
Loading…
Reference in New Issue
Block a user