diff --git a/Nevanlinna/firstMain.lean b/Nevanlinna/firstMain.lean index a441d8f..10d86df 100644 --- a/Nevanlinna/firstMain.lean +++ b/Nevanlinna/firstMain.lean @@ -1,8 +1,9 @@ import Mathlib.MeasureTheory.Integral.CircleIntegral import Nevanlinna.divisor -import Nevanlinna.stronglyMeromorphicOn import Nevanlinna.meromorphicOn_divisor import Nevanlinna.meromorphicOn_integrability +import Nevanlinna.stronglyMeromorphicOn +import Nevanlinna.stronglyMeromorphic_JensenFormula open Real @@ -158,20 +159,20 @@ theorem Nevanlinna_firstMain₁ rw [add_eq_of_eq_sub] unfold MeromorphicOn.T_infty - have {A B C D : ℝ → ℝ} : A + B - (C + D) = A - C + (B - D) := by + have {A B C D : ℝ → ℝ} : A + B - (C + D) = A - C - (D - B) := by ring rw [this] clear this + rw [Nevanlinna_counting₀ h₁f] + rw [Nevanlinna_counting h₁f] funext r simp rw [← Nevanlinna_proximity h₁f] + have hr : 0 < r := by sorry - - unfold MeromorphicOn.N_infty - unfold MeromorphicOn.m_infty - simp + let A := jensen sorry theorem Nevanlinna_firstMain₂ diff --git a/Nevanlinna/stronglyMeromorphic_JensenFormula.lean b/Nevanlinna/stronglyMeromorphic_JensenFormula.lean index 9d4c52e..ee21ca5 100644 --- a/Nevanlinna/stronglyMeromorphic_JensenFormula.lean +++ b/Nevanlinna/stronglyMeromorphic_JensenFormula.lean @@ -3,50 +3,11 @@ import Nevanlinna.stronglyMeromorphicOn_eliminate open Real -lemma jensen₀ - {R : ℝ} - (hR : 0 < R) - (f : ℂ → ℂ) - (h₁f : StronglyMeromorphicOn f (Metric.closedBall 0 R)) - (h₂f : f 0 ≠ 0) : - ∃ F : ℂ → ℂ, - AnalyticOnNhd ℂ F (Metric.closedBall (0 : ℂ) R) - ∧ (∀ (u : (Metric.closedBall (0 : ℂ) R)), F u ≠ 0) - ∧ (fun z ↦ log ‖f z‖) =ᶠ[Filter.codiscreteWithin (Metric.closedBall (0 : ℂ) R)] (fun z ↦ log ‖F z‖ + ∑ᶠ s, (h₁f.meromorphicOn.divisor s) * log ‖z - s‖) := by - - have h₁U : IsConnected (Metric.closedBall (0 : ℂ) R) := by - constructor - · apply Metric.nonempty_closedBall.mpr - exact le_of_lt hR - · exact (convex_closedBall (0 : ℂ) R).isPreconnected - - have h₂U : IsCompact (Metric.closedBall (0 : ℂ) R) := isCompact_closedBall (0 : ℂ) R - - - obtain ⟨F, h₁F, h₂F, h₃F, h₄F⟩ := MeromorphicOn.decompose₃' h₂U h₁U h₁f (by use ⟨0, Metric.mem_closedBall_self (le_of_lt hR)⟩) - - use F - constructor - · exact h₂F - · constructor - · exact fun u ↦ h₃F u - · rw [Filter.eventuallyEq_iff_exists_mem] - use {z | f z ≠ 0} - constructor - · sorry - · intro z hz - simp at hz - nth_rw 1 [h₄F] - simp only [Pi.mul_apply, norm_mul] - - - sorry - - -theorem jensen +theorem jensen₀ {R : ℝ} (hR : 0 < R) (f : ℂ → ℂ) + -- WARNING: Not needed. MeromorphicOn suffices (h₁f : StronglyMeromorphicOn f (Metric.closedBall 0 R)) (h₂f : f 0 ≠ 0) : log ‖f 0‖ = -∑ᶠ s, (h₁f.meromorphicOn.divisor s) * log (R * ‖s‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ℝ) in (0)..(2 * π), log ‖f (circleMap 0 R x)‖ := by @@ -183,7 +144,7 @@ theorem jensen rcases C with C₁|C₂ · assumption · let B := h₁f.meromorphicOn.order_ne_top' h₁U - let C := fun q ↦ B q ⟨(circleMap 0 R a), t₀⟩ + let C := fun q ↦ B.1 q ⟨(circleMap 0 R a), t₀⟩ rw [C₂] at C have : ∃ u : (Metric.closedBall (0 : ℂ) R), (h₁f u u.2).meromorphicAt.order ≠ ⊤ := by use ⟨(0 : ℂ), (by simp; exact le_of_lt hR)⟩ @@ -440,3 +401,73 @@ theorem jensen rw [hCon] at hs simp at hs exact hs h'''₂f + + +theorem jensen + {R : ℝ} + (hR : 0 < R) + (f : ℂ → ℂ) + (h₁f : MeromorphicOn f (Metric.closedBall 0 R)) + (h₁f' : StronglyMeromorphicAt f 0) + (h₂f : f 0 ≠ 0) : + log ‖f 0‖ = -∑ᶠ s, (h₁f.divisor s) * log (R * ‖s‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ℝ) in (0)..(2 * π), log ‖f (circleMap 0 R x)‖ := by + + let F := h₁f.makeStronglyMeromorphicOn + + have : F 0 = f 0 := by + unfold F + have : 0 ∈ (Metric.closedBall 0 R) := by + simp [hR] + exact le_of_lt hR + unfold MeromorphicOn.makeStronglyMeromorphicOn + simp [this] + intro h₁R + + let A := StronglyMeromorphicAt.makeStronglyMeromorphic_id h₁f' + simp_rw [A] + rw [← this] + rw [← this] at h₂f + clear this + + have h₁F := stronglyMeromorphicOn_of_makeStronglyMeromorphicOn h₁f + + rw [jensen₀ hR F h₁F h₂f] + + rw [h₁f.divisor_of_makeStronglyMeromorphicOn] + congr 2 + have {x : ℝ} : log ‖F (circleMap 0 R x)‖ = (fun z ↦ log ‖F z‖) (circleMap 0 R x) := by + rfl + conv => + left + arg 1 + intro x + rw [this] + have {x : ℝ} : log ‖f (circleMap 0 R x)‖ = (fun z ↦ log ‖f z‖) (circleMap 0 R x) := by + rfl + conv => + right + arg 1 + intro x + rw [this] + + have h'R : R ≠ 0 := by exact Ne.symm (ne_of_lt hR) + have hU : Metric.sphere (0 : ℂ) |R| ⊆ (Metric.closedBall (0 : ℂ) R) := by + have : R = |R| := by exact Eq.symm (abs_of_pos hR) + nth_rw 2 [this] + exact Metric.sphere_subset_closedBall + + let A := integral_congr_changeDiscrete h'R hU (f₁ := fun z ↦ log ‖F z‖) (f₂ := fun z ↦ log ‖f z‖) + apply A + clear A + + rw [Filter.eventuallyEq_iff_exists_mem] + have A := makeStronglyMeromorphicOn_changeDiscrete'' h₁f + rw [Filter.eventuallyEq_iff_exists_mem] at A + obtain ⟨s, h₁s, h₂s⟩ := A + use s + constructor + · exact h₁s + · intro x hx + let A := h₂s hx + simp + rw [A]