185 lines
4.3 KiB
Plaintext
185 lines
4.3 KiB
Plaintext
import Mathlib.MeasureTheory.Integral.CircleIntegral
|
||
import Nevanlinna.divisor
|
||
import Nevanlinna.meromorphicOn_divisor
|
||
import Nevanlinna.meromorphicOn_integrability
|
||
import Nevanlinna.stronglyMeromorphicOn
|
||
import Nevanlinna.stronglyMeromorphic_JensenFormula
|
||
|
||
open Real
|
||
|
||
|
||
-- Lang p. 164
|
||
|
||
theorem MeromorphicOn.restrict
|
||
{f : ℂ → ℂ}
|
||
(h₁f : MeromorphicOn f ⊤)
|
||
(r : ℝ) :
|
||
MeromorphicOn f (Metric.closedBall 0 r) := by
|
||
exact fun x a => h₁f x trivial
|
||
|
||
theorem MeromorphicOn.restrict_inv
|
||
{f : ℂ → ℂ}
|
||
(h₁f : MeromorphicOn f ⊤)
|
||
(r : ℝ) :
|
||
h₁f.inv.restrict r = (h₁f.restrict r).inv := by
|
||
funext x
|
||
simp
|
||
|
||
|
||
noncomputable def MeromorphicOn.N_zero
|
||
{f : ℂ → ℂ}
|
||
(hf : MeromorphicOn f ⊤) :
|
||
ℝ → ℝ :=
|
||
fun r ↦ ∑ᶠ z, (max 0 ((hf.restrict r).divisor z)) * log (r * ‖z‖⁻¹)
|
||
|
||
noncomputable def MeromorphicOn.N_infty
|
||
{f : ℂ → ℂ}
|
||
(hf : MeromorphicOn f ⊤) :
|
||
ℝ → ℝ :=
|
||
fun r ↦ ∑ᶠ z, (max 0 (-((hf.restrict r).divisor z))) * log (r * ‖z‖⁻¹)
|
||
|
||
theorem Nevanlinna_counting₀
|
||
{f : ℂ → ℂ}
|
||
(hf : MeromorphicOn f ⊤) :
|
||
hf.inv.N_infty = hf.N_zero := by
|
||
funext r
|
||
unfold MeromorphicOn.N_zero MeromorphicOn.N_infty
|
||
let A := (hf.restrict r).divisor.finiteSupport (isCompact_closedBall 0 r)
|
||
repeat
|
||
rw [finsum_eq_sum_of_support_subset (s := A.toFinset)]
|
||
apply Finset.sum_congr rfl
|
||
intro x hx
|
||
congr
|
||
rw [hf.restrict_inv r]
|
||
rw [MeromorphicOn.divisor_inv]
|
||
simp
|
||
--
|
||
exact fun x a => hf x trivial
|
||
--
|
||
intro x
|
||
contrapose
|
||
simp
|
||
intro hx
|
||
rw [hx]
|
||
tauto
|
||
--
|
||
intro x
|
||
contrapose
|
||
simp
|
||
intro hx h₁x
|
||
rw [hf.restrict_inv r] at h₁x
|
||
have hh : MeromorphicOn f (Metric.closedBall 0 r) := hf.restrict r
|
||
rw [hh.divisor_inv] at h₁x
|
||
simp at h₁x
|
||
rw [hx] at h₁x
|
||
tauto
|
||
|
||
|
||
theorem Nevanlinna_counting
|
||
{f : ℂ → ℂ}
|
||
(hf : MeromorphicOn f ⊤) :
|
||
hf.N_zero - hf.N_infty = fun r ↦ ∑ᶠ z, ((hf.restrict r).divisor z) * log (r * ‖z‖⁻¹) := by
|
||
|
||
funext r
|
||
simp only [Pi.sub_apply]
|
||
unfold MeromorphicOn.N_zero MeromorphicOn.N_infty
|
||
|
||
let A := (hf.restrict r).divisor.finiteSupport (isCompact_closedBall 0 r)
|
||
repeat
|
||
rw [finsum_eq_sum_of_support_subset (s := A.toFinset)]
|
||
rw [← Finset.sum_sub_distrib]
|
||
simp_rw [← sub_mul]
|
||
congr
|
||
funext x
|
||
congr
|
||
by_cases h : 0 ≤ (hf.restrict r).divisor x
|
||
· simp [h]
|
||
· have h' : 0 ≤ -((hf.restrict r).divisor x) := by
|
||
simp at h
|
||
apply Int.le_neg_of_le_neg
|
||
simp
|
||
exact Int.le_of_lt h
|
||
simp at h
|
||
simp [h']
|
||
linarith
|
||
--
|
||
repeat
|
||
intro x
|
||
contrapose
|
||
simp
|
||
intro hx
|
||
rw [hx]
|
||
tauto
|
||
|
||
|
||
--
|
||
|
||
noncomputable def MeromorphicOn.m_infty
|
||
{f : ℂ → ℂ}
|
||
(_ : MeromorphicOn f ⊤) :
|
||
ℝ → ℝ :=
|
||
fun r ↦ (2 * π)⁻¹ * ∫ x in (0)..(2 * π), logpos ‖f (circleMap 0 r x)‖
|
||
|
||
|
||
theorem Nevanlinna_proximity
|
||
{f : ℂ → ℂ}
|
||
{r : ℝ}
|
||
(h₁f : MeromorphicOn f ⊤) :
|
||
(2 * π)⁻¹ * ∫ x in (0)..(2 * π), log ‖f (circleMap 0 r x)‖ = (h₁f.m_infty r) - (h₁f.inv.m_infty r) := by
|
||
|
||
unfold MeromorphicOn.m_infty
|
||
rw [← mul_sub]; congr
|
||
rw [← intervalIntegral.integral_sub]; congr
|
||
funext x
|
||
simp_rw [loglogpos]; congr
|
||
exact Eq.symm (IsAbsoluteValue.abv_inv Norm.norm (f (circleMap 0 r x)))
|
||
--
|
||
apply MeromorphicOn.integrable_logpos_abs_f
|
||
intro z hx
|
||
exact h₁f z trivial
|
||
--
|
||
apply MeromorphicOn.integrable_logpos_abs_f
|
||
exact MeromorphicOn.inv_iff.mpr fun x a => h₁f x trivial
|
||
|
||
|
||
noncomputable def MeromorphicOn.T_infty
|
||
{f : ℂ → ℂ}
|
||
(hf : MeromorphicOn f ⊤) :
|
||
ℝ → ℝ :=
|
||
hf.m_infty + hf.N_infty
|
||
|
||
|
||
theorem Nevanlinna_firstMain₁
|
||
{f : ℂ → ℂ}
|
||
(h₁f : MeromorphicOn f ⊤)
|
||
(h₂f : StronglyMeromorphicAt f 0)
|
||
(h₃f : f 0 ≠ 0) :
|
||
(fun r ↦ log ‖f 0‖) + h₁f.inv.T_infty = h₁f.T_infty := by
|
||
|
||
rw [add_eq_of_eq_sub]
|
||
unfold MeromorphicOn.T_infty
|
||
|
||
have {A B C D : ℝ → ℝ} : A + B - (C + D) = A - C - (D - B) := by
|
||
ring
|
||
rw [this]
|
||
clear this
|
||
|
||
rw [Nevanlinna_counting₀ h₁f]
|
||
rw [Nevanlinna_counting h₁f]
|
||
funext r
|
||
simp
|
||
rw [← Nevanlinna_proximity h₁f]
|
||
|
||
have hr : 0 < r := by sorry
|
||
|
||
let A := jensen
|
||
sorry
|
||
|
||
theorem Nevanlinna_firstMain₂
|
||
{f : ℂ → ℂ}
|
||
{a : ℂ}
|
||
{r : ℝ}
|
||
(h₁f : MeromorphicOn f ⊤) :
|
||
|(h₁f.T_infty r) - ((h₁f.sub (MeromorphicOn.const a)).T_infty r)| ≤ logpos ‖a‖ + log 2 := by
|
||
sorry
|