working
This commit is contained in:
parent
c376bd3c46
commit
8a8e0769c2
|
@ -334,10 +334,10 @@ theorem primitive_additivity
|
||||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||||
(f : ℂ → E)
|
(f : ℂ → E)
|
||||||
(z₀ : ℂ)
|
(z₀ : ℂ)
|
||||||
(R : ℝ)
|
(rx ry : ℝ)
|
||||||
(hf : DifferentiableOn ℂ f (Metric.ball z₀ R))
|
(hf : DifferentiableOn ℂ f (Metric.ball z₀.re rx ×ℂ Metric.ball z₀.im ry))
|
||||||
(z₁ : ℂ)
|
(z₁ : ℂ)
|
||||||
(hz₁ : z₁ ∈ Metric.ball z₀ R)
|
(hz₁ : z₁ ∈ (Metric.ball z₀.re rx ×ℂ Metric.ball z₀.im ry))
|
||||||
:
|
:
|
||||||
∀ z ∈ Metric.ball z₁ (R - dist z₁ z₀), (primitive z₀ f z) - (primitive z₁ f z) - (primitive z₀ f z₁) = 0 := by
|
∀ z ∈ Metric.ball z₁ (R - dist z₁ z₀), (primitive z₀ f z) - (primitive z₁ f z) - (primitive z₀ f z₁) = 0 := by
|
||||||
intro z hz
|
intro z hz
|
||||||
|
@ -345,19 +345,15 @@ theorem primitive_additivity
|
||||||
have H : (Set.uIcc z₁.re z.re ×ℂ Set.uIcc z₀.im z₁.im) ⊆ Metric.ball z₀ R := by
|
have H : (Set.uIcc z₁.re z.re ×ℂ Set.uIcc z₀.im z₁.im) ⊆ Metric.ball z₀ R := by
|
||||||
intro x hx
|
intro x hx
|
||||||
|
|
||||||
have a₀ : x.re ∈ Set.uIcc z₁.re z.re := by exact (Complex.mem_reProdIm.1 hx).1
|
|
||||||
have a₁ : x.im ∈ Set.uIcc z₀.im z₁.im := by exact (Complex.mem_reProdIm.1 hx).2
|
|
||||||
|
|
||||||
|
|
||||||
have A₀ : dist x.re z₀.re ≤ dist x.re z₁.re + dist z₁.re z₀.re := by apply dist_triangle
|
|
||||||
|
|
||||||
have A₁ : dist x.im z₀.im ≤ dist z₁.im z₀.im := by
|
have A₁ : dist x.im z₀.im ≤ dist z₁.im z₀.im := by
|
||||||
apply Real.dist_right_le_of_mem_uIcc
|
apply Real.dist_right_le_of_mem_uIcc
|
||||||
rwa [Set.uIcc_comm]
|
rw [Set.uIcc_comm]
|
||||||
|
exact (Complex.mem_reProdIm.1 hx).2
|
||||||
|
|
||||||
have A₂ : dist x.re z₁.re ≤ dist z.re z₁.re := by
|
have A₂ : dist x.re z₁.re ≤ dist z.re z₁.re := by
|
||||||
apply Real.dist_right_le_of_mem_uIcc
|
apply Real.dist_right_le_of_mem_uIcc
|
||||||
rwa [Set.uIcc_comm]
|
rw [Set.uIcc_comm]
|
||||||
|
exact (Complex.mem_reProdIm.1 hx).1
|
||||||
|
|
||||||
have A₃ : dist z.re z₁.re < R - dist z₁ z₀ := by
|
have A₃ : dist z.re z₁.re < R - dist z₁ z₀ := by
|
||||||
have : ∀ x₀ x₁ : ℂ, dist x₀.re x₁.re ≤ dist x₀ x₁ := by
|
have : ∀ x₀ x₁ : ℂ, dist x₀.re x₁.re ≤ dist x₀ x₁ := by
|
||||||
|
@ -372,8 +368,6 @@ theorem primitive_additivity
|
||||||
|
|
||||||
simp
|
simp
|
||||||
|
|
||||||
have B₀ : dist x z₀ ≤ dist x ⟨z₁.re, x.im⟩ + dist ⟨z₁.re, x.im⟩ z₀ := by apply dist_triangle
|
|
||||||
|
|
||||||
have B₁ : dist ⟨z₁.re, x.im⟩ z₀ ≤ dist z₁ z₀ := by
|
have B₁ : dist ⟨z₁.re, x.im⟩ z₀ ≤ dist z₁ z₀ := by
|
||||||
rw [Complex.dist_eq_re_im]
|
rw [Complex.dist_eq_re_im]
|
||||||
rw [Complex.dist_eq_re_im]
|
rw [Complex.dist_eq_re_im]
|
||||||
|
@ -474,6 +468,7 @@ theorem primitive_additivity
|
||||||
intro w hw
|
intro w hw
|
||||||
simp
|
simp
|
||||||
|
|
||||||
|
|
||||||
sorry --apply integrability₂ f hf
|
sorry --apply integrability₂ f hf
|
||||||
|
|
||||||
sorry --apply integrability₂ f hf
|
sorry --apply integrability₂ f hf
|
||||||
|
|
Loading…
Reference in New Issue