working
This commit is contained in:
parent
c041cff4ad
commit
854b7ef492
|
@ -538,12 +538,11 @@ theorem primitive_additivity
|
||||||
|
|
||||||
theorem primitive_additivity'
|
theorem primitive_additivity'
|
||||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||||
(f : ℂ → E)
|
{f : ℂ → E}
|
||||||
(z₀ : ℂ)
|
{z₀ z₁ : ℂ}
|
||||||
(R : ℝ)
|
{R : ℝ}
|
||||||
(hf : DifferentiableOn ℂ f (Metric.ball z₀ R))
|
(hf : DifferentiableOn ℂ f (Metric.ball z₀ R))
|
||||||
(z₁ : ℂ)
|
(hz₁ : z₁ ∈ Metric.ball z₀ R)
|
||||||
(hz₁ : z₁ ∈ (Metric.ball z₀ R))
|
|
||||||
:
|
:
|
||||||
primitive z₀ f =ᶠ[nhds z₁] fun z ↦ (primitive z₁ f z) + (primitive z₀ f z₁) := by
|
primitive z₀ f =ᶠ[nhds z₁] fun z ↦ (primitive z₁ f z) + (primitive z₀ f z₁) := by
|
||||||
sorry
|
sorry
|
||||||
|
@ -551,14 +550,14 @@ theorem primitive_additivity'
|
||||||
|
|
||||||
theorem primitive_hasDerivAt
|
theorem primitive_hasDerivAt
|
||||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||||
(f : ℂ → E)
|
{f : ℂ → E}
|
||||||
(z₀ z : ℂ)
|
{z₀ z : ℂ}
|
||||||
(R : ℝ)
|
{R : ℝ}
|
||||||
(hf : DifferentiableOn ℂ f (Metric.ball z₀ R))
|
(hf : DifferentiableOn ℂ f (Metric.ball z₀ R))
|
||||||
(hz : z ∈ Metric.ball z₀ R) :
|
(hz : z ∈ Metric.ball z₀ R) :
|
||||||
HasDerivAt (primitive z₀ f) (f z) z := by
|
HasDerivAt (primitive z₀ f) (f z) z := by
|
||||||
|
|
||||||
let A := primitive_additivity' f z₀ R hf z hz
|
let A := primitive_additivity' hf hz
|
||||||
rw [Filter.EventuallyEq.hasDerivAt_iff A]
|
rw [Filter.EventuallyEq.hasDerivAt_iff A]
|
||||||
rw [← add_zero (f z)]
|
rw [← add_zero (f z)]
|
||||||
apply HasDerivAt.add
|
apply HasDerivAt.add
|
||||||
|
@ -579,7 +578,7 @@ theorem primitive_differentiable
|
||||||
DifferentiableOn ℂ (primitive z₀ f) (Metric.ball z₀ R) := by
|
DifferentiableOn ℂ (primitive z₀ f) (Metric.ball z₀ R) := by
|
||||||
intro z hz
|
intro z hz
|
||||||
apply DifferentiableAt.differentiableWithinAt
|
apply DifferentiableAt.differentiableWithinAt
|
||||||
exact (primitive_hasDerivAt f z₀ z R hf hz).differentiableAt
|
exact (primitive_hasDerivAt hf hz).differentiableAt
|
||||||
|
|
||||||
|
|
||||||
theorem primitive_hasFderivAt
|
theorem primitive_hasFderivAt
|
||||||
|
@ -593,27 +592,27 @@ theorem primitive_hasFderivAt
|
||||||
intro z hz
|
intro z hz
|
||||||
rw [hasFDerivAt_iff_hasDerivAt]
|
rw [hasFDerivAt_iff_hasDerivAt]
|
||||||
simp
|
simp
|
||||||
apply primitive_hasDerivAt f z₀ z R hf hz
|
apply primitive_hasDerivAt hf hz
|
||||||
|
|
||||||
|
|
||||||
theorem primitive_hasFderivAt'
|
theorem primitive_hasFderivAt'
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
(z₀ : ℂ)
|
{z₀ : ℂ}
|
||||||
(R : ℝ)
|
{R : ℝ}
|
||||||
(hf : DifferentiableOn ℂ f (Metric.ball z₀ R))
|
(hf : DifferentiableOn ℂ f (Metric.ball z₀ R))
|
||||||
:
|
:
|
||||||
∀ z ∈ Metric.ball z₀ R, HasFDerivAt (primitive z₀ f) (ContinuousLinearMap.lsmul ℂ ℂ (f z)) z := by
|
∀ z ∈ Metric.ball z₀ R, HasFDerivAt (primitive z₀ f) (ContinuousLinearMap.lsmul ℂ ℂ (f z)) z := by
|
||||||
intro z hz
|
intro z hz
|
||||||
rw [hasFDerivAt_iff_hasDerivAt]
|
rw [hasFDerivAt_iff_hasDerivAt]
|
||||||
simp
|
simp
|
||||||
exact primitive_hasDerivAt f z₀ z R hf hz
|
exact primitive_hasDerivAt hf hz
|
||||||
|
|
||||||
|
|
||||||
theorem primitive_fderiv
|
theorem primitive_fderiv
|
||||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||||
{f : ℂ → E}
|
{f : ℂ → E}
|
||||||
(z₀ : ℂ)
|
{z₀ : ℂ}
|
||||||
(R : ℝ)
|
{R : ℝ}
|
||||||
(hf : DifferentiableOn ℂ f (Metric.ball z₀ R))
|
(hf : DifferentiableOn ℂ f (Metric.ball z₀ R))
|
||||||
:
|
:
|
||||||
∀ z ∈ Metric.ball z₀ R, (fderiv ℂ (primitive z₀ f) z) = (ContinuousLinearMap.lsmul ℂ ℂ).flip (f z) := by
|
∀ z ∈ Metric.ball z₀ R, (fderiv ℂ (primitive z₀ f) z) = (ContinuousLinearMap.lsmul ℂ ℂ).flip (f z) := by
|
||||||
|
@ -624,11 +623,11 @@ theorem primitive_fderiv
|
||||||
|
|
||||||
theorem primitive_fderiv'
|
theorem primitive_fderiv'
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
(z₀ : ℂ)
|
{z₀ : ℂ}
|
||||||
(R : ℝ)
|
{R : ℝ}
|
||||||
(hf : DifferentiableOn ℂ f (Metric.ball z₀ R))
|
(hf : DifferentiableOn ℂ f (Metric.ball z₀ R))
|
||||||
:
|
:
|
||||||
∀ z ∈ Metric.ball z₀ R, (fderiv ℂ (primitive z₀ f) z) = ContinuousLinearMap.lsmul ℂ ℂ (f z) := by
|
∀ z ∈ Metric.ball z₀ R, (fderiv ℂ (primitive z₀ f) z) = ContinuousLinearMap.lsmul ℂ ℂ (f z) := by
|
||||||
intro z hz
|
intro z hz
|
||||||
apply HasFDerivAt.fderiv
|
apply HasFDerivAt.fderiv
|
||||||
exact primitive_hasFderivAt' z₀ R hf z hz
|
exact primitive_hasFderivAt' hf z hz
|
||||||
|
|
Loading…
Reference in New Issue