Update holomorphic_zero.lean
This commit is contained in:
parent
2c2370638a
commit
7b1c861a92
|
@ -115,7 +115,7 @@ theorem zeroDivisor_support_iff
|
||||||
assumption
|
assumption
|
||||||
|
|
||||||
|
|
||||||
example
|
theorem topOnPreconnected
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
{U : Set ℂ}
|
{U : Set ℂ}
|
||||||
(hU : IsPreconnected U)
|
(hU : IsPreconnected U)
|
||||||
|
@ -132,6 +132,40 @@ example
|
||||||
tauto
|
tauto
|
||||||
|
|
||||||
|
|
||||||
|
theorem supportZeroSet
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
{U : Set ℂ}
|
||||||
|
(hU : IsPreconnected U)
|
||||||
|
(h₁f : AnalyticOn ℂ f U)
|
||||||
|
(h₂f : ∃ z ∈ U, f z ≠ 0) :
|
||||||
|
U ∩ Function.support (zeroDivisor f) = U ∩ f⁻¹' {0} := by
|
||||||
|
|
||||||
|
ext x
|
||||||
|
constructor
|
||||||
|
· intro hx
|
||||||
|
constructor
|
||||||
|
· exact hx.1
|
||||||
|
exact zeroDivisor_zeroSet hx.2
|
||||||
|
· simp
|
||||||
|
intro h₁x h₂x
|
||||||
|
constructor
|
||||||
|
· exact h₁x
|
||||||
|
· let A := zeroDivisor_support_iff (f := f) (z₀ := x)
|
||||||
|
simp at A
|
||||||
|
rw [A]
|
||||||
|
constructor
|
||||||
|
· exact h₂x
|
||||||
|
· constructor
|
||||||
|
· exact h₁f x h₁x
|
||||||
|
· have B := AnalyticAt.order_eq_nat_iff (h₁f x h₁x) (zeroDivisor f x)
|
||||||
|
simp at B
|
||||||
|
rw [← B]
|
||||||
|
dsimp [zeroDivisor]
|
||||||
|
simp [h₁f x h₁x]
|
||||||
|
refine Eq.symm (ENat.coe_toNat ?h.mpr.right.right.right.a)
|
||||||
|
exact topOnPreconnected hU h₁f h₂f h₁x
|
||||||
|
|
||||||
|
|
||||||
theorem discreteZeros
|
theorem discreteZeros
|
||||||
{f : ℂ → ℂ} :
|
{f : ℂ → ℂ} :
|
||||||
DiscreteTopology (Function.support (zeroDivisor f)) := by
|
DiscreteTopology (Function.support (zeroDivisor f)) := by
|
||||||
|
|
Loading…
Reference in New Issue