diff --git a/Nevanlinna/holomorphic_zero.lean b/Nevanlinna/holomorphic_zero.lean index 407c436..d6021cc 100644 --- a/Nevanlinna/holomorphic_zero.lean +++ b/Nevanlinna/holomorphic_zero.lean @@ -115,7 +115,7 @@ theorem zeroDivisor_support_iff assumption -example +theorem topOnPreconnected {f : ℂ → ℂ} {U : Set ℂ} (hU : IsPreconnected U) @@ -132,6 +132,40 @@ example tauto +theorem supportZeroSet + {f : ℂ → ℂ} + {U : Set ℂ} + (hU : IsPreconnected U) + (h₁f : AnalyticOn ℂ f U) + (h₂f : ∃ z ∈ U, f z ≠ 0) : + U ∩ Function.support (zeroDivisor f) = U ∩ f⁻¹' {0} := by + + ext x + constructor + · intro hx + constructor + · exact hx.1 + exact zeroDivisor_zeroSet hx.2 + · simp + intro h₁x h₂x + constructor + · exact h₁x + · let A := zeroDivisor_support_iff (f := f) (z₀ := x) + simp at A + rw [A] + constructor + · exact h₂x + · constructor + · exact h₁f x h₁x + · have B := AnalyticAt.order_eq_nat_iff (h₁f x h₁x) (zeroDivisor f x) + simp at B + rw [← B] + dsimp [zeroDivisor] + simp [h₁f x h₁x] + refine Eq.symm (ENat.coe_toNat ?h.mpr.right.right.right.a) + exact topOnPreconnected hU h₁f h₂f h₁x + + theorem discreteZeros {f : ℂ → ℂ} : DiscreteTopology (Function.support (zeroDivisor f)) := by