Update holomorphic_zero.lean
This commit is contained in:
parent
2c2370638a
commit
7b1c861a92
@ -115,7 +115,7 @@ theorem zeroDivisor_support_iff
|
||||
assumption
|
||||
|
||||
|
||||
example
|
||||
theorem topOnPreconnected
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(hU : IsPreconnected U)
|
||||
@ -132,6 +132,40 @@ example
|
||||
tauto
|
||||
|
||||
|
||||
theorem supportZeroSet
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(hU : IsPreconnected U)
|
||||
(h₁f : AnalyticOn ℂ f U)
|
||||
(h₂f : ∃ z ∈ U, f z ≠ 0) :
|
||||
U ∩ Function.support (zeroDivisor f) = U ∩ f⁻¹' {0} := by
|
||||
|
||||
ext x
|
||||
constructor
|
||||
· intro hx
|
||||
constructor
|
||||
· exact hx.1
|
||||
exact zeroDivisor_zeroSet hx.2
|
||||
· simp
|
||||
intro h₁x h₂x
|
||||
constructor
|
||||
· exact h₁x
|
||||
· let A := zeroDivisor_support_iff (f := f) (z₀ := x)
|
||||
simp at A
|
||||
rw [A]
|
||||
constructor
|
||||
· exact h₂x
|
||||
· constructor
|
||||
· exact h₁f x h₁x
|
||||
· have B := AnalyticAt.order_eq_nat_iff (h₁f x h₁x) (zeroDivisor f x)
|
||||
simp at B
|
||||
rw [← B]
|
||||
dsimp [zeroDivisor]
|
||||
simp [h₁f x h₁x]
|
||||
refine Eq.symm (ENat.coe_toNat ?h.mpr.right.right.right.a)
|
||||
exact topOnPreconnected hU h₁f h₂f h₁x
|
||||
|
||||
|
||||
theorem discreteZeros
|
||||
{f : ℂ → ℂ} :
|
||||
DiscreteTopology (Function.support (zeroDivisor f)) := by
|
||||
|
Loading…
Reference in New Issue
Block a user