Update complexHarmonic.lean
This commit is contained in:
parent
015ab14131
commit
710de9372b
@ -122,28 +122,7 @@ theorem logabs_of_holomorphic_is_harmonic
|
||||
(h₃ : ∀ z, f z ∈ Complex.slitPlane) :
|
||||
Harmonic (fun z ↦ Real.log ‖f z‖) := by
|
||||
|
||||
-- f is real C²
|
||||
have f_is_real_C2 : ContDiff ℝ 2 f :=
|
||||
ContDiff.restrict_scalars ℝ (Differentiable.contDiff h₁)
|
||||
|
||||
-- Complex.log ∘ f is real C²
|
||||
have t₀ : Differentiable ℂ (Complex.log ∘ f) := by
|
||||
intro z
|
||||
apply DifferentiableAt.comp
|
||||
exact Complex.differentiableAt_log (h₃ z)
|
||||
exact h₁ z
|
||||
|
||||
have t₂ : Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f = ⇑(starRingEnd ℂ) ∘ Complex.log ∘ f := by
|
||||
funext z
|
||||
unfold Function.comp
|
||||
rw [Complex.log_conj]
|
||||
exact Complex.slitPlane_arg_ne_pi (h₃ z)
|
||||
|
||||
have t₃ : ⇑(starRingEnd ℂ) ∘ Complex.log ∘ f = Complex.conjCLE ∘ Complex.log ∘ f := by
|
||||
rfl
|
||||
|
||||
-- The norm square is z * z.conj
|
||||
have normSq_conj : ∀ (z : ℂ), (starRingEnd ℂ) z * z = ↑‖z‖ ^ 2 := Complex.conj_mul'
|
||||
/- We start with a number of lemmas on regularity of all the functions involved -/
|
||||
|
||||
-- The norm square is real C²
|
||||
have normSq_is_real_C2 : ContDiff ℝ 2 Complex.normSq := by
|
||||
@ -161,6 +140,18 @@ theorem logabs_of_holomorphic_is_harmonic
|
||||
apply ContinuousLinearMap.contDiff Complex.imCLM
|
||||
apply ContinuousLinearMap.contDiff Complex.imCLM
|
||||
|
||||
-- f is real C²
|
||||
have f_is_real_C2 : ContDiff ℝ 2 f :=
|
||||
ContDiff.restrict_scalars ℝ (Differentiable.contDiff h₁)
|
||||
|
||||
-- Complex.log ∘ f is real C²
|
||||
have log_f_is_holomorphic : Differentiable ℂ (Complex.log ∘ f) := by
|
||||
intro z
|
||||
apply DifferentiableAt.comp
|
||||
exact Complex.differentiableAt_log (h₃ z)
|
||||
exact h₁ z
|
||||
|
||||
-- Real.log |f|² is real C²
|
||||
have t₄ : ContDiff ℝ 2 (Real.log ∘ ⇑Complex.normSq ∘ f) := by
|
||||
rw [contDiff_iff_contDiffAt]
|
||||
intro z
|
||||
@ -171,6 +162,19 @@ theorem logabs_of_holomorphic_is_harmonic
|
||||
apply ContDiff.comp_contDiffAt z normSq_is_real_C2
|
||||
exact ContDiff.contDiffAt f_is_real_C2
|
||||
|
||||
|
||||
|
||||
|
||||
have t₂ : Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f = Complex.conjCLE ∘ Complex.log ∘ f := by
|
||||
funext z
|
||||
unfold Function.comp
|
||||
rw [Complex.log_conj]
|
||||
rfl
|
||||
exact Complex.slitPlane_arg_ne_pi (h₃ z)
|
||||
|
||||
|
||||
|
||||
|
||||
constructor
|
||||
· -- logabs f is real C²
|
||||
have : (fun z ↦ Real.log ‖f z‖) = (2 : ℝ)⁻¹ • (Real.log ∘ Complex.normSq ∘ f) := by
|
||||
@ -190,15 +194,8 @@ theorem logabs_of_holomorphic_is_harmonic
|
||||
|
||||
apply contDiff_iff_contDiffAt.2
|
||||
intro z
|
||||
|
||||
apply ContDiffAt.const_smul
|
||||
apply ContDiffAt.comp
|
||||
apply Real.contDiffAt_log.2
|
||||
simp
|
||||
exact h₂ z
|
||||
apply ContDiffAt.comp
|
||||
exact ContDiff.contDiffAt normSq_is_real_C2
|
||||
exact ContDiff.contDiffAt f_is_real_C2
|
||||
exact ContDiff.contDiffAt t₄
|
||||
|
||||
· -- Laplace vanishes
|
||||
have : (fun z ↦ Real.log ‖f z‖) = (2 : ℝ)⁻¹ • (Real.log ∘ Complex.normSq ∘ f) := by
|
||||
@ -258,31 +255,23 @@ theorem logabs_of_holomorphic_is_harmonic
|
||||
rw [this]
|
||||
rw [laplace_add]
|
||||
|
||||
have t₁: Complex.laplace (Complex.log ∘ f) = 0 := by
|
||||
let A := holomorphic_is_harmonic t₀
|
||||
funext z
|
||||
exact A.2 z
|
||||
rw [t₁]
|
||||
rw [t₂, laplace_compCLE]
|
||||
intro z
|
||||
simp
|
||||
|
||||
rw [t₂]
|
||||
|
||||
rw [t₃]
|
||||
rw [laplace_compCLE]
|
||||
rw [t₁]
|
||||
rw [(holomorphic_is_harmonic log_f_is_holomorphic).2 z]
|
||||
simp
|
||||
|
||||
-- ContDiff ℝ 2 (Complex.log ∘ f)
|
||||
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff t₀)
|
||||
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff log_f_is_holomorphic)
|
||||
|
||||
-- ContDiff ℝ 2 (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f)
|
||||
rw [t₂, t₃]
|
||||
rw [t₂]
|
||||
apply ContDiff.comp
|
||||
exact ContinuousLinearEquiv.contDiff Complex.conjCLE
|
||||
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff t₀)
|
||||
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff log_f_is_holomorphic)
|
||||
|
||||
-- ContDiff ℝ 2 (Complex.log ∘ f)
|
||||
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff t₀)
|
||||
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff log_f_is_holomorphic)
|
||||
|
||||
-- ContDiff ℝ 2 (Real.log ∘ ⇑Complex.normSq ∘ f)
|
||||
exact t₄
|
||||
|
Loading…
Reference in New Issue
Block a user