Update analyticOn_zeroSet.lean
This commit is contained in:
parent
8bc46c2874
commit
688347a837
|
@ -1,3 +1,4 @@
|
|||
import Mathlib.Analysis.Analytic.Linear
|
||||
import Init.Classical
|
||||
import Mathlib.Analysis.Analytic.Meromorphic
|
||||
import Mathlib.Topology.ContinuousOn
|
||||
|
@ -146,7 +147,7 @@ theorem AnalyticOn.order_of_mul
|
|||
· exact Set.mem_inter h₃t₁ h₃t₂
|
||||
|
||||
|
||||
theorem AnalyticOn.order_eq_nat_iff'
|
||||
theorem AnalyticOn.eliminateZeros
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
{A : Finset U}
|
||||
|
@ -169,9 +170,45 @@ theorem AnalyticOn.order_eq_nat_iff'
|
|||
|
||||
have : (h₁g₀ b₀ b₀.2).order = n b₀ := by
|
||||
|
||||
let A := hBinsert b₀ (Finset.mem_insert_self b₀ B)
|
||||
exact A
|
||||
sorry
|
||||
rw [← hBinsert b₀ (Finset.mem_insert_self b₀ B)]
|
||||
|
||||
let φ := fun z ↦ (∏ a ∈ B, (z - a.1) ^ n a.1)
|
||||
|
||||
have : f = fun z ↦ φ z * g₀ z := by
|
||||
funext z
|
||||
rw [h₃g₀ z]
|
||||
rfl
|
||||
simp_rw [this]
|
||||
|
||||
have h₁φ : AnalyticAt ℂ φ b₀ := by
|
||||
dsimp [φ]
|
||||
apply Finset.analyticAt_prod
|
||||
intro b hb
|
||||
apply AnalyticAt.pow
|
||||
apply AnalyticAt.sub
|
||||
apply analyticAt_id
|
||||
|
||||
have h₂φ : h₁φ.order = (0 : ℕ) := by
|
||||
rw [AnalyticAt.order_eq_nat_iff h₁φ 0]
|
||||
use φ
|
||||
constructor
|
||||
· assumption
|
||||
· constructor
|
||||
· dsimp [φ]
|
||||
push_neg
|
||||
rw [Finset.prod_ne_zero_iff]
|
||||
intro a ha
|
||||
have AA : b₀.1 - a ≠ 0 := by
|
||||
sorry
|
||||
simp [AA]
|
||||
|
||||
· simp
|
||||
|
||||
rw [AnalyticOn.order_of_mul h₁φ (h₁g₀ b₀ b₀.2)]
|
||||
|
||||
rw [h₂φ]
|
||||
simp
|
||||
|
||||
|
||||
obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticOn.order_eq_nat_iff h₁g₀ b₀.2 (n b₀)).1 this
|
||||
|
||||
|
|
Loading…
Reference in New Issue