Update analyticOn_zeroSet.lean
This commit is contained in:
parent
b0d663530b
commit
8bc46c2874
|
@ -2,6 +2,7 @@ import Init.Classical
|
|||
import Mathlib.Analysis.Analytic.Meromorphic
|
||||
import Mathlib.Topology.ContinuousOn
|
||||
import Mathlib.Analysis.Analytic.IsolatedZeros
|
||||
import Mathlib.Analysis.Analytic.Constructions
|
||||
import Nevanlinna.holomorphic
|
||||
|
||||
|
||||
|
@ -95,6 +96,56 @@ theorem AnalyticOn.order_eq_nat_iff
|
|||
exact ⟨h₁g z₀ hz₀, ⟨h₂g, Filter.eventually_of_forall h₃g⟩⟩
|
||||
|
||||
|
||||
theorem AnalyticOn.order_of_mul
|
||||
{f₁ f₂ : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hf₁ : AnalyticAt ℂ f₁ z₀)
|
||||
(hf₂ : AnalyticAt ℂ f₂ z₀) :
|
||||
(AnalyticAt.mul hf₁ hf₂).order = hf₁.order + hf₂.order := by
|
||||
by_cases h₂f₁ : hf₁.order = ⊤
|
||||
· simp [h₂f₁]
|
||||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff]
|
||||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] at h₂f₁
|
||||
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₁
|
||||
use t
|
||||
constructor
|
||||
· intro y hy
|
||||
rw [h₁t y hy]
|
||||
ring
|
||||
· exact ⟨h₂t, h₃t⟩
|
||||
· by_cases h₂f₂ : hf₂.order = ⊤
|
||||
· simp [h₂f₂]
|
||||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff]
|
||||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] at h₂f₂
|
||||
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₂
|
||||
use t
|
||||
constructor
|
||||
· intro y hy
|
||||
rw [h₁t y hy]
|
||||
ring
|
||||
· exact ⟨h₂t, h₃t⟩
|
||||
· obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticAt.order_eq_nat_iff hf₁ ↑hf₁.order.toNat).1 (eq_comm.1 (ENat.coe_toNat h₂f₁))
|
||||
obtain ⟨g₂, h₁g₂, h₂g₂, h₃g₂⟩ := (AnalyticAt.order_eq_nat_iff hf₂ ↑hf₂.order.toNat).1 (eq_comm.1 (ENat.coe_toNat h₂f₂))
|
||||
rw [← ENat.coe_toNat h₂f₁, ← ENat.coe_toNat h₂f₂, ← ENat.coe_add]
|
||||
rw [AnalyticAt.order_eq_nat_iff (AnalyticAt.mul hf₁ hf₂) ↑(hf₁.order.toNat + hf₂.order.toNat)]
|
||||
use g₁ * g₂
|
||||
constructor
|
||||
· exact AnalyticAt.mul h₁g₁ h₁g₂
|
||||
· constructor
|
||||
· simp; tauto
|
||||
· obtain ⟨t₁, h₁t₁, h₂t₁, h₃t₁⟩ := eventually_nhds_iff.1 h₃g₁
|
||||
obtain ⟨t₂, h₁t₂, h₂t₂, h₃t₂⟩ := eventually_nhds_iff.1 h₃g₂
|
||||
rw [eventually_nhds_iff]
|
||||
use t₁ ∩ t₂
|
||||
constructor
|
||||
· intro y hy
|
||||
rw [h₁t₁ y hy.1, h₁t₂ y hy.2]
|
||||
simp; ring
|
||||
· constructor
|
||||
· exact IsOpen.inter h₂t₁ h₂t₂
|
||||
· exact Set.mem_inter h₃t₁ h₃t₂
|
||||
|
||||
|
||||
theorem AnalyticOn.order_eq_nat_iff'
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
|
@ -116,7 +167,12 @@ theorem AnalyticOn.order_eq_nat_iff'
|
|||
intro hBinsert
|
||||
obtain ⟨g₀, h₁g₀, h₂g₀, h₃g₀⟩ := iHyp (fun a ha ↦ hBinsert a (Finset.mem_insert_of_mem ha))
|
||||
|
||||
have : (h₁g₀ b₀ b₀.2).order = n b₀ := by sorry
|
||||
have : (h₁g₀ b₀ b₀.2).order = n b₀ := by
|
||||
|
||||
let A := hBinsert b₀ (Finset.mem_insert_self b₀ B)
|
||||
exact A
|
||||
sorry
|
||||
|
||||
obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticOn.order_eq_nat_iff h₁g₀ b₀.2 (n b₀)).1 this
|
||||
|
||||
use g₁
|
||||
|
|
Loading…
Reference in New Issue