nevanlinna/Nevanlinna/analyticOn_zeroSet.lean

237 lines
7.2 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Mathlib.Analysis.Analytic.Linear
import Init.Classical
import Mathlib.Analysis.Analytic.Meromorphic
import Mathlib.Topology.ContinuousOn
import Mathlib.Analysis.Analytic.IsolatedZeros
import Mathlib.Analysis.Analytic.Constructions
import Nevanlinna.holomorphic
theorem AnalyticOn.order_eq_nat_iff
{f : }
{U : Set }
{z₀ : }
(hf : AnalyticOn f U)
(hz₀ : z₀ ∈ U)
(n : ) :
(hf z₀ hz₀).order = ↑n ↔ ∃ (g : ), AnalyticOn g U ∧ g z₀ ≠ 0 ∧ ∀ z, f z = (z - z₀) ^ n • g z := by
constructor
-- Direction →
intro hn
obtain ⟨gloc, h₁gloc, h₂gloc, h₃gloc⟩ := (AnalyticAt.order_eq_nat_iff (hf z₀ hz₀) n).1 hn
-- Define a candidate function; this is (f z) / (z - z₀) ^ n with the
-- removable singularity removed
let g : := fun z ↦ if z = z₀ then gloc z₀ else (f z) / (z - z₀) ^ n
-- Describe g near z₀
have g_near_z₀ : ∀ᶠ (z : ) in nhds z₀, g z = gloc z := by
rw [eventually_nhds_iff]
obtain ⟨t, h₁t, h₂t, h₃t⟩ := eventually_nhds_iff.1 h₃gloc
use t
constructor
· intro y h₁y
by_cases h₂y : y = z₀
· dsimp [g]; simp [h₂y]
· dsimp [g]; simp [h₂y]
rw [div_eq_iff_mul_eq, eq_comm, mul_comm]
exact h₁t y h₁y
norm_num
rw [sub_eq_zero]
tauto
· constructor
· assumption
· assumption
-- Describe g near points z₁ that are different from z₀
have g_near_z₁ {z₁ : } : z₁ ≠ z₀ → ∀ᶠ (z : ) in nhds z₁, g z = f z / (z - z₀) ^ n := by
intro hz₁
rw [eventually_nhds_iff]
use {z₀}ᶜ
constructor
· intro y hy
simp at hy
simp [g, hy]
· exact ⟨isOpen_compl_singleton, hz₁⟩
-- Use g and show that it has all required properties
use g
constructor
· -- AnalyticOn g U
intro z h₁z
by_cases h₂z : z = z₀
· rw [h₂z]
apply AnalyticAt.congr h₁gloc
exact Filter.EventuallyEq.symm g_near_z₀
· simp_rw [eq_comm] at g_near_z₁
apply AnalyticAt.congr _ (g_near_z₁ h₂z)
apply AnalyticAt.div
exact hf z h₁z
apply AnalyticAt.pow
apply AnalyticAt.sub
apply analyticAt_id
apply analyticAt_const
simp
rw [sub_eq_zero]
tauto
· constructor
· simp [g]; tauto
· intro z
by_cases h₂z : z = z₀
· rw [h₂z, g_near_z₀.self_of_nhds]
exact h₃gloc.self_of_nhds
· rw [(g_near_z₁ h₂z).self_of_nhds]
simp [h₂z]
rw [div_eq_mul_inv, mul_comm, mul_assoc, inv_mul_cancel]
simp; norm_num
rw [sub_eq_zero]
tauto
-- direction ←
intro h
obtain ⟨g, h₁g, h₂g, h₃g⟩ := h
rw [AnalyticAt.order_eq_nat_iff]
use g
exact ⟨h₁g z₀ hz₀, ⟨h₂g, Filter.eventually_of_forall h₃g⟩⟩
theorem AnalyticOn.order_of_mul
{f₁ f₂ : }
{z₀ : }
(hf₁ : AnalyticAt f₁ z₀)
(hf₂ : AnalyticAt f₂ z₀) :
(AnalyticAt.mul hf₁ hf₂).order = hf₁.order + hf₂.order := by
by_cases h₂f₁ : hf₁.order =
· simp [h₂f₁]
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff]
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] at h₂f₁
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₁
use t
constructor
· intro y hy
rw [h₁t y hy]
ring
· exact ⟨h₂t, h₃t⟩
· by_cases h₂f₂ : hf₂.order =
· simp [h₂f₂]
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff]
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] at h₂f₂
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₂
use t
constructor
· intro y hy
rw [h₁t y hy]
ring
· exact ⟨h₂t, h₃t⟩
· obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticAt.order_eq_nat_iff hf₁ ↑hf₁.order.toNat).1 (eq_comm.1 (ENat.coe_toNat h₂f₁))
obtain ⟨g₂, h₁g₂, h₂g₂, h₃g₂⟩ := (AnalyticAt.order_eq_nat_iff hf₂ ↑hf₂.order.toNat).1 (eq_comm.1 (ENat.coe_toNat h₂f₂))
rw [← ENat.coe_toNat h₂f₁, ← ENat.coe_toNat h₂f₂, ← ENat.coe_add]
rw [AnalyticAt.order_eq_nat_iff (AnalyticAt.mul hf₁ hf₂) ↑(hf₁.order.toNat + hf₂.order.toNat)]
use g₁ * g₂
constructor
· exact AnalyticAt.mul h₁g₁ h₁g₂
· constructor
· simp; tauto
· obtain ⟨t₁, h₁t₁, h₂t₁, h₃t₁⟩ := eventually_nhds_iff.1 h₃g₁
obtain ⟨t₂, h₁t₂, h₂t₂, h₃t₂⟩ := eventually_nhds_iff.1 h₃g₂
rw [eventually_nhds_iff]
use t₁ ∩ t₂
constructor
· intro y hy
rw [h₁t₁ y hy.1, h₁t₂ y hy.2]
simp; ring
· constructor
· exact IsOpen.inter h₂t₁ h₂t₂
· exact Set.mem_inter h₃t₁ h₃t₂
theorem AnalyticOn.eliminateZeros
{f : }
{U : Set }
{A : Finset U}
(hf : AnalyticOn f U)
(n : ) :
(∀ a ∈ A, (hf a.1 a.2).order = n a) → ∃ (g : ), AnalyticOn g U ∧ (∀ a ∈ A, g a ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (n a)) • g z := by
apply Finset.induction (α := U) (p := fun A ↦ (∀ a ∈ A, (hf a.1 a.2).order = n a) → ∃ (g : ), AnalyticOn g U ∧ (∀ a ∈ A, g a ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (n a)) • g z)
-- case empty
simp
use f
simp
exact hf
-- case insert
intro b₀ B hb iHyp
intro hBinsert
obtain ⟨g₀, h₁g₀, h₂g₀, h₃g₀⟩ := iHyp (fun a ha ↦ hBinsert a (Finset.mem_insert_of_mem ha))
have : (h₁g₀ b₀ b₀.2).order = n b₀ := by
rw [← hBinsert b₀ (Finset.mem_insert_self b₀ B)]
let φ := fun z ↦ (∏ a ∈ B, (z - a.1) ^ n a.1)
have : f = fun z ↦ φ z * g₀ z := by
funext z
rw [h₃g₀ z]
rfl
simp_rw [this]
have h₁φ : AnalyticAt φ b₀ := by
dsimp [φ]
apply Finset.analyticAt_prod
intro b hb
apply AnalyticAt.pow
apply AnalyticAt.sub
apply analyticAt_id
have h₂φ : h₁φ.order = (0 : ) := by
rw [AnalyticAt.order_eq_nat_iff h₁φ 0]
use φ
constructor
· assumption
· constructor
· dsimp [φ]
push_neg
rw [Finset.prod_ne_zero_iff]
intro a ha
have AA : b₀.1 - a ≠ 0 := by
sorry
simp [AA]
· simp
rw [AnalyticOn.order_of_mul h₁φ (h₁g₀ b₀ b₀.2)]
rw [h₂φ]
simp
obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticOn.order_eq_nat_iff h₁g₀ b₀.2 (n b₀)).1 this
use g₁
constructor
· exact h₁g₁
· constructor
· intro a h₁a
by_cases h₂a : a = b₀
· rwa [h₂a]
· let A' := Finset.mem_of_mem_insert_of_ne h₁a h₂a
let B' := h₃g₁ a
let C' := h₂g₀ a A'
rw [B'] at C'
exact right_ne_zero_of_smul C'
· intro z
let A' := h₃g₀ z
rw [h₃g₁ z] at A'
rw [A']
rw [← smul_assoc]
congr
simp
rw [Finset.prod_insert]
ring
exact hb