Update analyticOn_zeroSet.lean
This commit is contained in:
parent
8bc46c2874
commit
688347a837
|
@ -1,3 +1,4 @@
|
||||||
|
import Mathlib.Analysis.Analytic.Linear
|
||||||
import Init.Classical
|
import Init.Classical
|
||||||
import Mathlib.Analysis.Analytic.Meromorphic
|
import Mathlib.Analysis.Analytic.Meromorphic
|
||||||
import Mathlib.Topology.ContinuousOn
|
import Mathlib.Topology.ContinuousOn
|
||||||
|
@ -146,7 +147,7 @@ theorem AnalyticOn.order_of_mul
|
||||||
· exact Set.mem_inter h₃t₁ h₃t₂
|
· exact Set.mem_inter h₃t₁ h₃t₂
|
||||||
|
|
||||||
|
|
||||||
theorem AnalyticOn.order_eq_nat_iff'
|
theorem AnalyticOn.eliminateZeros
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
{U : Set ℂ}
|
{U : Set ℂ}
|
||||||
{A : Finset U}
|
{A : Finset U}
|
||||||
|
@ -169,9 +170,45 @@ theorem AnalyticOn.order_eq_nat_iff'
|
||||||
|
|
||||||
have : (h₁g₀ b₀ b₀.2).order = n b₀ := by
|
have : (h₁g₀ b₀ b₀.2).order = n b₀ := by
|
||||||
|
|
||||||
let A := hBinsert b₀ (Finset.mem_insert_self b₀ B)
|
rw [← hBinsert b₀ (Finset.mem_insert_self b₀ B)]
|
||||||
exact A
|
|
||||||
|
let φ := fun z ↦ (∏ a ∈ B, (z - a.1) ^ n a.1)
|
||||||
|
|
||||||
|
have : f = fun z ↦ φ z * g₀ z := by
|
||||||
|
funext z
|
||||||
|
rw [h₃g₀ z]
|
||||||
|
rfl
|
||||||
|
simp_rw [this]
|
||||||
|
|
||||||
|
have h₁φ : AnalyticAt ℂ φ b₀ := by
|
||||||
|
dsimp [φ]
|
||||||
|
apply Finset.analyticAt_prod
|
||||||
|
intro b hb
|
||||||
|
apply AnalyticAt.pow
|
||||||
|
apply AnalyticAt.sub
|
||||||
|
apply analyticAt_id
|
||||||
|
|
||||||
|
have h₂φ : h₁φ.order = (0 : ℕ) := by
|
||||||
|
rw [AnalyticAt.order_eq_nat_iff h₁φ 0]
|
||||||
|
use φ
|
||||||
|
constructor
|
||||||
|
· assumption
|
||||||
|
· constructor
|
||||||
|
· dsimp [φ]
|
||||||
|
push_neg
|
||||||
|
rw [Finset.prod_ne_zero_iff]
|
||||||
|
intro a ha
|
||||||
|
have AA : b₀.1 - a ≠ 0 := by
|
||||||
sorry
|
sorry
|
||||||
|
simp [AA]
|
||||||
|
|
||||||
|
· simp
|
||||||
|
|
||||||
|
rw [AnalyticOn.order_of_mul h₁φ (h₁g₀ b₀ b₀.2)]
|
||||||
|
|
||||||
|
rw [h₂φ]
|
||||||
|
simp
|
||||||
|
|
||||||
|
|
||||||
obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticOn.order_eq_nat_iff h₁g₀ b₀.2 (n b₀)).1 this
|
obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticOn.order_eq_nat_iff h₁g₀ b₀.2 (n b₀)).1 this
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue