Update bilinear.lean
This commit is contained in:
parent
8b4317759c
commit
602296031d
|
@ -1,16 +1,6 @@
|
|||
--import Mathlib.Algebra.BigOperators.Basic
|
||||
import Mathlib.LinearAlgebra.TensorProduct.Basic
|
||||
import Mathlib.Analysis.InnerProductSpace.Basic
|
||||
import Mathlib.Analysis.InnerProductSpace.Dual
|
||||
import Mathlib.Analysis.InnerProductSpace.PiL2
|
||||
|
||||
open BigOperators
|
||||
open Finset
|
||||
open scoped TensorProduct
|
||||
|
||||
variable {E : Type*} [NormedAddCommGroup E] [InnerProductSpace ℝ E] [FiniteDimensional ℝ E]
|
||||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
||||
|
||||
open TensorProduct
|
||||
|
||||
|
||||
lemma OrthonormalBasis.sum_repr'
|
||||
|
@ -33,19 +23,17 @@ noncomputable def InnerProductSpace.canonicalTensor
|
|||
|
||||
theorem InnerProductSpace.InvariantTensor
|
||||
(E : Type*) [NormedAddCommGroup E] [InnerProductSpace ℝ E] [FiniteDimensional ℝ E]
|
||||
(v₂ : OrthonormalBasis (Fin (FiniteDimensional.finrank ℝ E)) ℝ E)
|
||||
: InnerProductSpace.canonicalTensor E = ∑ i, (v₂ i) ⊗ₜ[ℝ] (v₂ i) := by
|
||||
(v : OrthonormalBasis (Fin (FiniteDimensional.finrank ℝ E)) ℝ E)
|
||||
: InnerProductSpace.canonicalTensor E = ∑ i, (v i) ⊗ₜ[ℝ] (v i) := by
|
||||
|
||||
unfold InnerProductSpace.canonicalTensor
|
||||
|
||||
let v₁ := stdOrthonormalBasis ℝ E
|
||||
simp
|
||||
|
||||
conv =>
|
||||
right
|
||||
arg 2
|
||||
intro i
|
||||
rw [v₁.sum_repr' (v₂ i)]
|
||||
rw [v₁.sum_repr' (v i)]
|
||||
simp_rw [TensorProduct.sum_tmul, TensorProduct.tmul_sum, TensorProduct.smul_tmul_smul]
|
||||
|
||||
conv =>
|
||||
|
@ -61,13 +49,10 @@ theorem InnerProductSpace.InvariantTensor
|
|||
arg 2
|
||||
intro i
|
||||
rw [← real_inner_comm (v₁ x)]
|
||||
simp_rw [OrthonormalBasis.sum_inner_mul_inner v₂]
|
||||
simp_rw [OrthonormalBasis.sum_inner_mul_inner v]
|
||||
|
||||
have xx {r₀ : Fin (FiniteDimensional.finrank ℝ E)} : ∀ r₁ : Fin (FiniteDimensional.finrank ℝ E), r₁ ≠ r₀ → ⟪v₁ r₀, v₁ r₁⟫_ℝ • v₁ r₀ ⊗ₜ[ℝ] v₁ r₁ = 0 := by
|
||||
have {x : Fin (FiniteDimensional.finrank ℝ E)} : ∑ x_1 : Fin (FiniteDimensional.finrank ℝ E), ⟪v₁ x, v₁ x_1⟫_ℝ • v₁ x ⊗ₜ[ℝ] v₁ x_1 = v₁ x ⊗ₜ[ℝ] v₁ x := by
|
||||
rw [Fintype.sum_eq_single x, orthonormal_iff_ite.1 v₁.orthonormal]; simp
|
||||
intro r₁ hr₁
|
||||
rw [orthonormal_iff_ite.1 v₁.orthonormal]
|
||||
simp
|
||||
tauto
|
||||
simp_rw [Fintype.sum_eq_single _ xx]
|
||||
simp_rw [orthonormal_iff_ite.1 v₁.orthonormal]
|
||||
simp
|
||||
rw [orthonormal_iff_ite.1 v₁.orthonormal]; simp; tauto
|
||||
simp_rw [this]
|
||||
|
|
Loading…
Reference in New Issue