diff --git a/Nevanlinna/bilinear.lean b/Nevanlinna/bilinear.lean index 02c514a..ea1d5a1 100644 --- a/Nevanlinna/bilinear.lean +++ b/Nevanlinna/bilinear.lean @@ -1,16 +1,6 @@ ---import Mathlib.Algebra.BigOperators.Basic -import Mathlib.LinearAlgebra.TensorProduct.Basic -import Mathlib.Analysis.InnerProductSpace.Basic -import Mathlib.Analysis.InnerProductSpace.Dual import Mathlib.Analysis.InnerProductSpace.PiL2 -open BigOperators -open Finset -open scoped TensorProduct - -variable {E : Type*} [NormedAddCommGroup E] [InnerProductSpace ℝ E] [FiniteDimensional ℝ E] -variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F] - +open TensorProduct lemma OrthonormalBasis.sum_repr' @@ -33,19 +23,17 @@ noncomputable def InnerProductSpace.canonicalTensor theorem InnerProductSpace.InvariantTensor (E : Type*) [NormedAddCommGroup E] [InnerProductSpace ℝ E] [FiniteDimensional ℝ E] - (v₂ : OrthonormalBasis (Fin (FiniteDimensional.finrank ℝ E)) ℝ E) - : InnerProductSpace.canonicalTensor E = ∑ i, (v₂ i) ⊗ₜ[ℝ] (v₂ i) := by + (v : OrthonormalBasis (Fin (FiniteDimensional.finrank ℝ E)) ℝ E) + : InnerProductSpace.canonicalTensor E = ∑ i, (v i) ⊗ₜ[ℝ] (v i) := by unfold InnerProductSpace.canonicalTensor - let v₁ := stdOrthonormalBasis ℝ E - simp conv => right arg 2 intro i - rw [v₁.sum_repr' (v₂ i)] + rw [v₁.sum_repr' (v i)] simp_rw [TensorProduct.sum_tmul, TensorProduct.tmul_sum, TensorProduct.smul_tmul_smul] conv => @@ -61,13 +49,10 @@ theorem InnerProductSpace.InvariantTensor arg 2 intro i rw [← real_inner_comm (v₁ x)] - simp_rw [OrthonormalBasis.sum_inner_mul_inner v₂] + simp_rw [OrthonormalBasis.sum_inner_mul_inner v] - have xx {r₀ : Fin (FiniteDimensional.finrank ℝ E)} : ∀ r₁ : Fin (FiniteDimensional.finrank ℝ E), r₁ ≠ r₀ → ⟪v₁ r₀, v₁ r₁⟫_ℝ • v₁ r₀ ⊗ₜ[ℝ] v₁ r₁ = 0 := by + have {x : Fin (FiniteDimensional.finrank ℝ E)} : ∑ x_1 : Fin (FiniteDimensional.finrank ℝ E), ⟪v₁ x, v₁ x_1⟫_ℝ • v₁ x ⊗ₜ[ℝ] v₁ x_1 = v₁ x ⊗ₜ[ℝ] v₁ x := by + rw [Fintype.sum_eq_single x, orthonormal_iff_ite.1 v₁.orthonormal]; simp intro r₁ hr₁ - rw [orthonormal_iff_ite.1 v₁.orthonormal] - simp - tauto - simp_rw [Fintype.sum_eq_single _ xx] - simp_rw [orthonormal_iff_ite.1 v₁.orthonormal] - simp + rw [orthonormal_iff_ite.1 v₁.orthonormal]; simp; tauto + simp_rw [this]