nevanlinna/Nevanlinna/bilinear.lean

59 lines
1.7 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Mathlib.Analysis.InnerProductSpace.PiL2
open TensorProduct
lemma OrthonormalBasis.sum_repr'
{𝕜 : Type*} [RCLike 𝕜]
{E : Type*} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E]
[Fintype ι]
(b : OrthonormalBasis ι 𝕜 E)
(v : E) :
v = ∑ i, ⟪b i, v⟫_𝕜 • (b i) := by
nth_rw 1 [← (b.sum_repr v)]
simp_rw [b.repr_apply_apply v]
noncomputable def InnerProductSpace.canonicalTensor
(E : Type u_2) [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E]
: E ⊗[] E := by
let v := stdOrthonormalBasis E
exact ∑ i, (v i) ⊗ₜ[] (v i)
theorem InnerProductSpace.InvariantTensor
(E : Type*) [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E]
(v : OrthonormalBasis (Fin (FiniteDimensional.finrank E)) E)
: InnerProductSpace.canonicalTensor E = ∑ i, (v i) ⊗ₜ[] (v i) := by
unfold InnerProductSpace.canonicalTensor
let v₁ := stdOrthonormalBasis E
conv =>
right
arg 2
intro i
rw [v₁.sum_repr' (v i)]
simp_rw [TensorProduct.sum_tmul, TensorProduct.tmul_sum, TensorProduct.smul_tmul_smul]
conv =>
right
rw [Finset.sum_comm]
arg 2
intro y
rw [Finset.sum_comm]
arg 2
intro x
rw [← Finset.sum_smul]
arg 1
arg 2
intro i
rw [← real_inner_comm (v₁ x)]
simp_rw [OrthonormalBasis.sum_inner_mul_inner v]
have {x : Fin (FiniteDimensional.finrank E)} : ∑ x_1 : Fin (FiniteDimensional.finrank E), ⟪v₁ x, v₁ x_1⟫_ • v₁ x ⊗ₜ[] v₁ x_1 = v₁ x ⊗ₜ[] v₁ x := by
rw [Fintype.sum_eq_single x, orthonormal_iff_ite.1 v₁.orthonormal]; simp
intro r₁ hr₁
rw [orthonormal_iff_ite.1 v₁.orthonormal]; simp; tauto
simp_rw [this]