import Mathlib.Analysis.InnerProductSpace.PiL2 open TensorProduct lemma OrthonormalBasis.sum_repr' {𝕜 : Type*} [RCLike 𝕜] {E : Type*} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] (b : OrthonormalBasis ι 𝕜 E) (v : E) : v = ∑ i, ⟪b i, v⟫_𝕜 • (b i) := by nth_rw 1 [← (b.sum_repr v)] simp_rw [b.repr_apply_apply v] noncomputable def InnerProductSpace.canonicalTensor (E : Type u_2) [NormedAddCommGroup E] [InnerProductSpace ℝ E] [FiniteDimensional ℝ E] : E ⊗[ℝ] E := by let v := stdOrthonormalBasis ℝ E exact ∑ i, (v i) ⊗ₜ[ℝ] (v i) theorem InnerProductSpace.InvariantTensor (E : Type*) [NormedAddCommGroup E] [InnerProductSpace ℝ E] [FiniteDimensional ℝ E] (v : OrthonormalBasis (Fin (FiniteDimensional.finrank ℝ E)) ℝ E) : InnerProductSpace.canonicalTensor E = ∑ i, (v i) ⊗ₜ[ℝ] (v i) := by unfold InnerProductSpace.canonicalTensor let v₁ := stdOrthonormalBasis ℝ E conv => right arg 2 intro i rw [v₁.sum_repr' (v i)] simp_rw [TensorProduct.sum_tmul, TensorProduct.tmul_sum, TensorProduct.smul_tmul_smul] conv => right rw [Finset.sum_comm] arg 2 intro y rw [Finset.sum_comm] arg 2 intro x rw [← Finset.sum_smul] arg 1 arg 2 intro i rw [← real_inner_comm (v₁ x)] simp_rw [OrthonormalBasis.sum_inner_mul_inner v] have {x : Fin (FiniteDimensional.finrank ℝ E)} : ∑ x_1 : Fin (FiniteDimensional.finrank ℝ E), ⟪v₁ x, v₁ x_1⟫_ℝ • v₁ x ⊗ₜ[ℝ] v₁ x_1 = v₁ x ⊗ₜ[ℝ] v₁ x := by rw [Fintype.sum_eq_single x, orthonormal_iff_ite.1 v₁.orthonormal]; simp intro r₁ hr₁ rw [orthonormal_iff_ite.1 v₁.orthonormal]; simp; tauto simp_rw [this]