Working…
This commit is contained in:
parent
f2988797b4
commit
4ca5f6d4d2
|
@ -0,0 +1,170 @@
|
|||
import Mathlib.Analysis.SpecialFunctions.Complex.LogDeriv
|
||||
import Nevanlinna.complexHarmonic
|
||||
import Nevanlinna.complexHarmonic
|
||||
import Nevanlinna.holomorphicAt
|
||||
|
||||
|
||||
theorem CauchyRiemann₆
|
||||
{E : Type*} [NormedAddCommGroup E] [NormedSpace ℂ E]
|
||||
{F : Type*} [NormedAddCommGroup F] [NormedSpace ℂ F]
|
||||
{f : E → F}
|
||||
{z : E} :
|
||||
(DifferentiableAt ℂ f z) ↔ (DifferentiableAt ℝ f z) ∧ ∀ e, partialDeriv ℝ (Complex.I • e) f z = Complex.I • partialDeriv ℝ e f z := by
|
||||
constructor
|
||||
|
||||
· -- Direction "→"
|
||||
intro h
|
||||
constructor
|
||||
· exact DifferentiableAt.restrictScalars ℝ h
|
||||
· unfold partialDeriv
|
||||
conv =>
|
||||
intro e
|
||||
left
|
||||
rw [DifferentiableAt.fderiv_restrictScalars ℝ h]
|
||||
simp
|
||||
rw [← mul_one Complex.I]
|
||||
rw [← smul_eq_mul]
|
||||
conv =>
|
||||
intro e
|
||||
right
|
||||
right
|
||||
rw [DifferentiableAt.fderiv_restrictScalars ℝ h]
|
||||
simp
|
||||
|
||||
· -- Direction "←"
|
||||
intro ⟨h₁, h₂⟩
|
||||
apply (differentiableAt_iff_restrictScalars ℝ h₁).2
|
||||
|
||||
use {
|
||||
toFun := fderiv ℝ f z
|
||||
map_add' := fun x y => ContinuousLinearMap.map_add (fderiv ℝ f z) x y
|
||||
map_smul' := by
|
||||
simp
|
||||
intro m x
|
||||
have : m = m.re + m.im • Complex.I := by simp
|
||||
rw [this, add_smul, add_smul, ContinuousLinearMap.map_add]
|
||||
congr
|
||||
simp
|
||||
rw [smul_assoc, smul_assoc, ContinuousLinearMap.map_smul (fderiv ℝ f z) m.2]
|
||||
congr
|
||||
exact h₂ x
|
||||
}
|
||||
rfl
|
||||
|
||||
|
||||
theorem CauchyRiemann₇
|
||||
{F : Type*} [NormedAddCommGroup F] [NormedSpace ℂ F]
|
||||
{f : ℂ → F}
|
||||
{z : ℂ} :
|
||||
(DifferentiableAt ℂ f z) ↔ (DifferentiableAt ℝ f z) ∧ partialDeriv ℝ Complex.I f z = Complex.I • partialDeriv ℝ 1 f z := by
|
||||
constructor
|
||||
· intro hf
|
||||
constructor
|
||||
· exact (CauchyRiemann₆.1 hf).1
|
||||
· let A := (CauchyRiemann₆.1 hf).2 1
|
||||
simp at A
|
||||
exact A
|
||||
· intro ⟨h₁, h₂⟩
|
||||
apply CauchyRiemann₆.2
|
||||
constructor
|
||||
· exact h₁
|
||||
· intro e
|
||||
have : Complex.I • e = e • Complex.I := by
|
||||
rw [smul_eq_mul, smul_eq_mul]
|
||||
exact CommMonoid.mul_comm Complex.I e
|
||||
rw [this]
|
||||
have : e = e.re + e.im • Complex.I := by simp
|
||||
rw [this, add_smul, partialDeriv_add₁, partialDeriv_add₁]
|
||||
simp
|
||||
rw [← smul_eq_mul]
|
||||
have : partialDeriv ℝ ((e.re : ℝ) • Complex.I) f = partialDeriv ℝ ((e.re : ℂ) • Complex.I) f := by rfl
|
||||
rw [← this, partialDeriv_smul₁ ℝ]
|
||||
have : (e.re : ℂ) = (e.re : ℝ) • (1 : ℂ) := by simp
|
||||
rw [this, partialDeriv_smul₁ ℝ]
|
||||
have : partialDeriv ℝ ((e.im : ℂ) * Complex.I) f = partialDeriv ℝ ((e.im : ℝ) • Complex.I) f := by rfl
|
||||
rw [this, partialDeriv_smul₁ ℝ]
|
||||
simp
|
||||
rw [h₂]
|
||||
rw [smul_comm]
|
||||
congr
|
||||
rw [mul_assoc]
|
||||
simp
|
||||
nth_rw 2 [smul_comm]
|
||||
rw [← smul_assoc]
|
||||
simp
|
||||
have : - (e.im : ℂ) = (-e.im : ℝ) • (1 : ℂ) := by simp
|
||||
rw [this, partialDeriv_smul₁ ℝ]
|
||||
simp
|
||||
|
||||
|
||||
|
||||
/-
|
||||
|
||||
A harmonic, real-valued function on ℂ is the real part of a suitable holomorphic function.
|
||||
|
||||
-/
|
||||
|
||||
theorem harmonic_is_realOfHolomorphic
|
||||
{f : ℂ → ℝ}
|
||||
(hf : ∀ z, HarmonicAt f z) :
|
||||
∃ F : ℂ → ℂ, ∀ z, (HolomorphicAt F z ∧ ((F z).re = f z)) := by
|
||||
|
||||
let f_1 : ℂ → ℂ := Complex.ofRealCLM ∘ (partialDeriv ℝ 1 f)
|
||||
let f_I : ℂ → ℂ := Complex.ofRealCLM ∘ (partialDeriv ℝ Complex.I f)
|
||||
|
||||
let g : ℂ → ℂ := f_1 - Complex.I • f_I
|
||||
|
||||
have reg₀ : Differentiable ℝ g := by
|
||||
let smulICLM : ℂ ≃L[ℝ] ℂ :=
|
||||
{
|
||||
toFun := fun x ↦ Complex.I • x
|
||||
map_add' := fun x y => DistribSMul.smul_add Complex.I x y
|
||||
map_smul' := fun m x => (smul_comm ((RingHom.id ℝ) m) Complex.I x).symm
|
||||
invFun := fun x ↦ (Complex.I)⁻¹ • x
|
||||
left_inv := by
|
||||
intro x
|
||||
simp
|
||||
rw [← mul_assoc, mul_comm]
|
||||
simp
|
||||
right_inv := by
|
||||
intro x
|
||||
simp
|
||||
rw [← mul_assoc]
|
||||
simp
|
||||
continuous_toFun := continuous_const_smul Complex.I
|
||||
continuous_invFun := continuous_const_smul (Complex.I)⁻¹
|
||||
}
|
||||
|
||||
apply Differentiable.sub
|
||||
apply Differentiable.comp
|
||||
exact ContinuousLinearMap.differentiable Complex.ofRealCLM
|
||||
intro z
|
||||
sorry
|
||||
apply Differentiable.comp
|
||||
sorry
|
||||
sorry
|
||||
|
||||
|
||||
have reg₁ : Differentiable ℂ g := by
|
||||
intro z
|
||||
apply CauchyRiemann₇.2
|
||||
constructor
|
||||
· exact reg₀ z
|
||||
· dsimp [g]
|
||||
have : f_1 - Complex.I • f_I = f_1 + (- Complex.I • f_I) := by
|
||||
rw [sub_eq_add_neg]
|
||||
simp
|
||||
rw [this, partialDeriv_add₂, partialDeriv_add₂]
|
||||
simp
|
||||
dsimp [f_1, f_I]
|
||||
|
||||
sorry
|
||||
sorry
|
||||
sorry
|
||||
sorry
|
||||
sorry
|
||||
|
||||
|
||||
|
||||
|
||||
sorry
|
|
@ -25,6 +25,7 @@ theorem partialDeriv_compContLinAt
|
|||
rw [fderiv.comp x (ContinuousLinearMap.differentiableAt l) h]
|
||||
simp
|
||||
|
||||
|
||||
theorem partialDeriv_compCLE
|
||||
{E : Type*} [NormedAddCommGroup E] [NormedSpace ℂ E]
|
||||
{F : Type*} [NormedAddCommGroup F] [NormedSpace ℂ F]
|
||||
|
@ -46,6 +47,7 @@ theorem partialDeriv_compCLE
|
|||
rw [ContinuousLinearEquiv.comp_differentiableAt_iff]
|
||||
exact hyp
|
||||
|
||||
|
||||
theorem partialDeriv_smul'₂
|
||||
{E : Type*} [NormedAddCommGroup E] [NormedSpace ℂ E]
|
||||
{F : Type*} [NormedAddCommGroup F] [NormedSpace ℂ F]
|
||||
|
@ -82,6 +84,7 @@ theorem partialDeriv_smul'₂
|
|||
rw [partialDeriv_compCLE]
|
||||
tauto
|
||||
|
||||
|
||||
theorem CauchyRiemann₄
|
||||
{F : Type*} [NormedAddCommGroup F] [NormedSpace ℂ F]
|
||||
{f : ℂ → F} :
|
||||
|
@ -104,6 +107,7 @@ theorem CauchyRiemann₄
|
|||
funext w
|
||||
simp
|
||||
|
||||
|
||||
theorem MeasureTheory.integral2_divergence₃
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E]
|
||||
(f g : ℝ × ℝ → E)
|
||||
|
@ -231,7 +235,6 @@ theorem integral_divergence₅
|
|||
exact B
|
||||
|
||||
|
||||
|
||||
noncomputable def primitive
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E] :
|
||||
ℂ → (ℂ → E) → (ℂ → E) := by
|
||||
|
@ -304,7 +307,6 @@ theorem primitive_fderivAtBasepointZero
|
|||
continuity
|
||||
fun_prop
|
||||
|
||||
|
||||
have t₃ {a : ℝ} : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 a := by
|
||||
apply Continuous.intervalIntegrable
|
||||
apply Continuous.comp
|
||||
|
|
|
@ -38,7 +38,11 @@ theorem partialDeriv_eventuallyEq
|
|||
exact fun v => rfl
|
||||
|
||||
|
||||
theorem partialDeriv_smul₁ {f : E → F} {a : 𝕜} {v : E} : partialDeriv 𝕜 (a • v) f = a • partialDeriv 𝕜 v f := by
|
||||
theorem partialDeriv_smul₁
|
||||
{f : E → F}
|
||||
{a : 𝕜}
|
||||
{v : E} :
|
||||
partialDeriv 𝕜 (a • v) f = a • partialDeriv 𝕜 v f := by
|
||||
unfold partialDeriv
|
||||
conv =>
|
||||
left
|
||||
|
|
Loading…
Reference in New Issue