nevanlinna/Nevanlinna/partialDeriv.lean

420 lines
13 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Mathlib.Analysis.Calculus.FDeriv.Basic
import Mathlib.Analysis.Calculus.FDeriv.Symmetric
import Mathlib.Analysis.Calculus.ContDiff.Basic
import Mathlib.Topology.Basic
import Mathlib.Topology.Defs.Filter
variable {𝕜 : Type*} [NontriviallyNormedField 𝕜]
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F]
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace 𝕜 G]
variable (𝕜)
noncomputable def partialDeriv : E → (E → F) → (E → F) :=
fun v ↦ (fun f ↦ (fun w ↦ fderiv 𝕜 f w v))
theorem partialDeriv_eventuallyEq'
{f₁ f₂ : E → F}
{x : E}
(h : f₁ =ᶠ[nhds x] f₂) :
∀ v : E, partialDeriv 𝕜 v f₁ =ᶠ[nhds x] partialDeriv 𝕜 v f₂ := by
unfold partialDeriv
intro v
apply Filter.EventuallyEq.comp₂
exact Filter.EventuallyEq.fderiv h
simp
theorem partialDeriv_eventuallyEq
{f₁ f₂ : E → F}
{x : E}
(h : f₁ =ᶠ[nhds x] f₂) :
∀ v : E, partialDeriv 𝕜 v f₁ x = partialDeriv 𝕜 v f₂ x := by
unfold partialDeriv
rw [Filter.EventuallyEq.fderiv_eq h]
exact fun v => rfl
theorem partialDeriv_smul₁
{f : E → F}
{a : 𝕜}
{v : E} :
partialDeriv 𝕜 (a • v) f = a • partialDeriv 𝕜 v f := by
unfold partialDeriv
conv =>
left
intro w
rw [map_smul]
funext w
simp
theorem partialDeriv_add₁ {f : E → F} {v₁ v₂ : E} : partialDeriv 𝕜 (v₁ + v₂) f = (partialDeriv 𝕜 v₁ f) + (partialDeriv 𝕜 v₂ f) := by
unfold partialDeriv
conv =>
left
intro w
rw [map_add]
funext w
simp
theorem partialDeriv_smul₂ {f : E → F} {a : 𝕜} {v : E} : partialDeriv 𝕜 v (a • f) = a • partialDeriv 𝕜 v f := by
unfold partialDeriv
funext w
have : a • f = fun y ↦ a • f y := by rfl
rw [this]
by_cases ha : a = 0
· rw [ha]
simp
· by_cases hf : DifferentiableAt 𝕜 f w
· rw [fderiv_const_smul hf]
simp
· have : ¬DifferentiableAt 𝕜 (fun y => a • f y) w := by
by_contra contra
let ZZ := DifferentiableAt.const_smul contra a⁻¹
have : (fun y => a⁻¹ • a • f y) = f := by
funext i
rw [← smul_assoc, smul_eq_mul, mul_comm, mul_inv_cancel ha]
simp
rw [this] at ZZ
exact hf ZZ
simp
rw [fderiv_zero_of_not_differentiableAt hf]
rw [fderiv_zero_of_not_differentiableAt this]
simp
theorem partialDeriv_add₂ {f₁ f₂ : E → F} (h₁ : Differentiable 𝕜 f₁) (h₂ : Differentiable 𝕜 f₂) : ∀ v : E, partialDeriv 𝕜 v (f₁ + f₂) = (partialDeriv 𝕜 v f₁) + (partialDeriv 𝕜 v f₂) := by
unfold partialDeriv
intro v
have : f₁ + f₂ = fun y ↦ f₁ y + f₂ y := by rfl
rw [this]
conv =>
left
intro w
left
rw [fderiv_add (h₁ w) (h₂ w)]
funext w
simp
theorem partialDeriv_add₂_differentiableAt
{f₁ f₂ : E → F}
{v : E}
{x : E}
(h₁ : DifferentiableAt 𝕜 f₁ x)
(h₂ : DifferentiableAt 𝕜 f₂ x) :
partialDeriv 𝕜 v (f₁ + f₂) x = (partialDeriv 𝕜 v f₁) x + (partialDeriv 𝕜 v f₂) x := by
unfold partialDeriv
have : f₁ + f₂ = fun y ↦ f₁ y + f₂ y := by rfl
rw [this]
rw [fderiv_add h₁ h₂]
rfl
theorem partialDeriv_add₂_contDiffAt
{f₁ f₂ : E → F}
{v : E}
{x : E}
(h₁ : ContDiffAt 𝕜 1 f₁ x)
(h₂ : ContDiffAt 𝕜 1 f₂ x) :
partialDeriv 𝕜 v (f₁ + f₂) =ᶠ[nhds x] (partialDeriv 𝕜 v f₁) + (partialDeriv 𝕜 v f₂) := by
obtain ⟨f₁', u₁, hu₁, _, hf₁'⟩ := contDiffAt_one_iff.1 h₁
obtain ⟨f₂', u₂, hu₂, _, hf₂'⟩ := contDiffAt_one_iff.1 h₂
apply Filter.eventuallyEq_iff_exists_mem.2
use u₁ ∩ u₂
constructor
· exact Filter.inter_mem hu₁ hu₂
· intro x hx
simp
apply partialDeriv_add₂_differentiableAt 𝕜
exact (hf₁' x (Set.mem_of_mem_inter_left hx)).differentiableAt
exact (hf₂' x (Set.mem_of_mem_inter_right hx)).differentiableAt
theorem partialDeriv_compContLin
{f : E → F}
{l : F →L[𝕜] G}
{v : E}
(h : Differentiable 𝕜 f) :
partialDeriv 𝕜 v (l ∘ f) = l ∘ partialDeriv 𝕜 v f := by
unfold partialDeriv
conv =>
left
intro w
left
rw [fderiv.comp w (ContinuousLinearMap.differentiableAt l) (h w)]
simp
rfl
theorem partialDeriv_compContLinAt {f : E → F} {l : F →L[𝕜] G} {v : E} {x : E} (h : DifferentiableAt 𝕜 f x) : (partialDeriv 𝕜 v (l ∘ f)) x = (l ∘ partialDeriv 𝕜 v f) x:= by
unfold partialDeriv
rw [fderiv.comp x (ContinuousLinearMap.differentiableAt l) h]
simp
theorem partialDeriv_compCLE {f : E → F} {l : F ≃L[𝕜] G} {v : E} : partialDeriv 𝕜 v (l ∘ f) = l ∘ partialDeriv 𝕜 v f := by
funext x
by_cases hyp : DifferentiableAt 𝕜 f x
· let lCLM : F →L[𝕜] G := l
suffices shyp : partialDeriv 𝕜 v (lCLM ∘ f) x = (lCLM ∘ partialDeriv 𝕜 v f) x from by tauto
apply partialDeriv_compContLinAt
exact hyp
· unfold partialDeriv
rw [fderiv_zero_of_not_differentiableAt]
simp
rw [fderiv_zero_of_not_differentiableAt]
simp
exact hyp
rw [ContinuousLinearEquiv.comp_differentiableAt_iff]
exact hyp
theorem partialDeriv_contDiff {n : } {f : E → F} (h : ContDiff 𝕜 (n + 1) f) : ∀ v : E, ContDiff 𝕜 n (partialDeriv 𝕜 v f) := by
unfold partialDeriv
intro v
let A := (contDiff_succ_iff_fderiv.1 h).right
simp at A
have : (fun w => (fderiv 𝕜 f w) v) = (fun f => f v) ∘ (fun w => (fderiv 𝕜 f w)) := by
rfl
rw [this]
refine ContDiff.comp ?hg A
refine ContDiff.of_succ ?hg.h
refine ContDiff.clm_apply ?hg.h.hf ?hg.h.hg
exact contDiff_id
exact contDiff_const
theorem partialDeriv_contDiffAt
{n : }
{f : E → F}
{x : E}
(h : ContDiffAt 𝕜 (n + 1) f x) :
∀ v : E, ContDiffAt 𝕜 n (partialDeriv 𝕜 v f) x := by
unfold partialDeriv
intro v
let eval_at_v : (E →L[𝕜] F) →L[𝕜] F :=
{
toFun := fun l ↦ l v
map_add' := by simp
map_smul' := by simp
}
have : (fun w => (fderiv 𝕜 f w) v) = eval_at_v ∘ (fun w => (fderiv 𝕜 f w)) := by
rfl
rw [this]
apply ContDiffAt.continuousLinearMap_comp
-- ContDiffAt 𝕜 (↑n) (fun w => fderiv 𝕜 f w) x
apply ContDiffAt.fderiv_right h
rfl
lemma partialDeriv_fderiv {f : E → F} (hf : ContDiff 𝕜 2 f) (z a b : E) :
fderiv 𝕜 (fderiv 𝕜 f) z b a = partialDeriv 𝕜 b (partialDeriv 𝕜 a f) z := by
unfold partialDeriv
rw [fderiv_clm_apply]
· simp
· exact (contDiff_succ_iff_fderiv.1 hf).2.differentiable le_rfl z
· simp
lemma partialDeriv_fderivOn
{s : Set E}
{f : E → F}
(hs : IsOpen s)
(hf : ContDiffOn 𝕜 2 f s) (a b : E) :
∀ z ∈ s, fderiv 𝕜 (fderiv 𝕜 f) z b a = partialDeriv 𝕜 b (partialDeriv 𝕜 a f) z := by
intro z hz
unfold partialDeriv
rw [fderiv_clm_apply]
· simp
· convert DifferentiableOn.differentiableAt _ (IsOpen.mem_nhds hs hz)
apply ContDiffOn.differentiableOn _ (Submonoid.oneLE.proof_2 ℕ∞)
exact ((contDiffOn_succ_iff_fderiv_of_isOpen hs).1 hf).2
· simp
lemma partialDeriv_fderivAt
{z : E}
{f : E → F}
(hf : ContDiffAt 𝕜 2 f z)
(a b : E) :
fderiv 𝕜 (fderiv 𝕜 f) z b a = partialDeriv 𝕜 b (partialDeriv 𝕜 a f) z := by
unfold partialDeriv
rw [fderiv_clm_apply]
simp
-- DifferentiableAt 𝕜 (fun w => fderiv 𝕜 f w) z
obtain ⟨f', ⟨u, h₁u, h₂u⟩, hf' ⟩ := contDiffAt_succ_iff_hasFDerivAt.1 hf
have t₁ : (fun w ↦ fderiv 𝕜 f w) =ᶠ[nhds z] f' := by
apply Filter.eventuallyEq_iff_exists_mem.2
use u
constructor
· exact h₁u
· intro x hx
exact HasFDerivAt.fderiv (h₂u x hx)
rw [Filter.EventuallyEq.differentiableAt_iff t₁]
exact hf'.differentiableAt le_rfl
-- DifferentiableAt 𝕜 (fun w => a) z
exact differentiableAt_const a
section restrictScalars
theorem partialDeriv_smul'₂
(𝕜 : Type*) [NontriviallyNormedField 𝕜]
{𝕜' : Type*} [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜']
{E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
{F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedSpace 𝕜' F]
[IsScalarTower 𝕜 𝕜' F]
{f : E → F} {a : 𝕜'} {v : E} :
partialDeriv 𝕜 v (a • f) = a • partialDeriv 𝕜 v f := by
funext w
by_cases ha : a = 0
· unfold partialDeriv
have : a • f = fun y ↦ a • f y := by rfl
rw [this, ha]
simp
· -- Now a is not zero. We present scalar multiplication with a as a continuous linear equivalence.
let smulCLM : F ≃L[𝕜] F :=
{
toFun := fun x ↦ a • x
map_add' := fun x y => DistribSMul.smul_add a x y
map_smul' := fun m x => (smul_comm ((RingHom.id 𝕜) m) a x).symm
invFun := fun x ↦ a⁻¹ • x
left_inv := by
intro x
simp
rw [← smul_assoc, smul_eq_mul, mul_comm, mul_inv_cancel ha, one_smul]
right_inv := by
intro x
simp
rw [← smul_assoc, smul_eq_mul, mul_inv_cancel ha, one_smul]
continuous_toFun := continuous_const_smul a
continuous_invFun := continuous_const_smul a⁻¹
}
have : a • f = smulCLM ∘ f := by tauto
rw [this]
rw [partialDeriv_compCLE]
tauto
theorem partialDeriv_restrictScalars
(𝕜 : Type*) [NontriviallyNormedField 𝕜]
{𝕜' : Type*} [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜']
{E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedSpace 𝕜' E]
[IsScalarTower 𝕜 𝕜' E]
{F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedSpace 𝕜' F]
[IsScalarTower 𝕜 𝕜' F]
{f : E → F} {v : E} :
Differentiable 𝕜' f → partialDeriv 𝕜 v f = partialDeriv 𝕜' v f := by
intro hf
unfold partialDeriv
funext x
rw [(hf x).fderiv_restrictScalars 𝕜]
simp
theorem partialDeriv_comm
{E : Type*} [NormedAddCommGroup E] [NormedSpace E]
{F : Type*} [NormedAddCommGroup F] [NormedSpace F]
{f : E → F} (h : ContDiff 2 f) :
∀ v₁ v₂ : E, partialDeriv v₁ (partialDeriv v₂ f) = partialDeriv v₂ (partialDeriv v₁ f) := by
intro v₁ v₂
funext z
have derivSymm :
(fderiv (fun w => fderiv f w) z) v₁ v₂ = (fderiv (fun w => fderiv f w) z) v₂ v₁ := by
let f' := fderiv f
have h₀ : ∀ y, HasFDerivAt f (f' y) y := by
intro y
exact DifferentiableAt.hasFDerivAt ((h.differentiable one_le_two) y)
let f'' := (fderiv f' z)
have h₁ : HasFDerivAt f' f'' z := by
apply DifferentiableAt.hasFDerivAt
apply (contDiff_succ_iff_fderiv.1 h).right.differentiable (Submonoid.oneLE.proof_2 ℕ∞)
apply second_derivative_symmetric h₀ h₁ v₁ v₂
rw [← partialDeriv_fderiv h z v₂ v₁]
rw [derivSymm]
rw [partialDeriv_fderiv h z v₁ v₂]
theorem partialDeriv_commOn
{E : Type*} [NormedAddCommGroup E] [NormedSpace E]
{F : Type*} [NormedAddCommGroup F] [NormedSpace F]
{s : Set E}
{f : E → F}
(hs : IsOpen s)
(h : ContDiffOn 2 f s) :
∀ v₁ v₂ : E, ∀ z ∈ s, partialDeriv v₁ (partialDeriv v₂ f) z = partialDeriv v₂ (partialDeriv v₁ f) z := by
intro v₁ v₂ z hz
have derivSymm :
(fderiv (fun w => fderiv f w) z) v₁ v₂ = (fderiv (fun w => fderiv f w) z) v₂ v₁ := by
let f' := fderiv f
have h₀1 : ∀ y ∈ s, HasFDerivAt f (f' y) y := by
intro y hy
apply DifferentiableAt.hasFDerivAt
apply DifferentiableOn.differentiableAt _ (IsOpen.mem_nhds hs hy)
apply h.differentiableOn one_le_two
let f'' := (fderiv f' z)
have h₁ : HasFDerivAt f' f'' z := by
apply DifferentiableAt.hasFDerivAt
apply DifferentiableOn.differentiableAt _ (IsOpen.mem_nhds hs hz)
apply ContDiffOn.differentiableOn _ (Submonoid.oneLE.proof_2 ℕ∞)
exact ((contDiffOn_succ_iff_fderiv_of_isOpen hs).1 h).2
have h₀' : ∀ᶠ (y : E) in nhds z, HasFDerivAt f (f' y) y := by
apply eventually_nhds_iff.mpr
use s
exact second_derivative_symmetric_of_eventually h₀' h₁ v₁ v₂
rw [← partialDeriv_fderivOn hs h v₂ v₁ z hz]
rw [derivSymm]
rw [← partialDeriv_fderivOn hs h v₁ v₂ z hz]
theorem partialDeriv_commAt
{E : Type*} [NormedAddCommGroup E] [NormedSpace E]
{F : Type*} [NormedAddCommGroup F] [NormedSpace F]
{z : E}
{f : E → F}
(h : ContDiffAt 2 f z) :
∀ v₁ v₂ : E, partialDeriv v₁ (partialDeriv v₂ f) z = partialDeriv v₂ (partialDeriv v₁ f) z := by
obtain ⟨u, hu₁, hu₂⟩ := h.contDiffOn le_rfl
obtain ⟨v, hv₁, hv₂, hv₃⟩ := mem_nhds_iff.1 hu₁
intro v₁ v₂
exact partialDeriv_commOn hv₂ (hu₂.mono hv₁) v₁ v₂ z hv₃